
Data Security and Privacy

Topic 8: Role Based Access Control

Plan for this lecture

• CodeShield: towards personalized application

whitelisting. Christopher S. Gates, Ninghui Li, Jing

Chen, Robert W. Proctor: ACSAC 2012: 279-288

• RBAC96 Family

– R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman.

“Role-Based Access Control Models”. IEEE Computer, 29(2):38--

47, February 1996.

• ANSI RBAC standard and its critique

– N. Li, J.-W. Byun, and E. Bertino. “A Critique of the ANSI

Standard on Role Based Access Control”. IEEE Security &

Privacy, 5(6):41--49, November 2007.

Application Whitelisting

• Instead of finding malwares and stop then, list all

known good/allowed programs and only run

them.

• Typically deployed by enterprise, who can afford

to maintain a list of allowed programs

CodeShield: Personalized

Application Whitelisting
• Goal: Practical Application Whitelisting on Windows

desktops
– Give the user flexibility

• Allow the user to add software to the whitelist

– Maintain the security advantage of whitelisting
• New software isn’t automatically allowed onto whitelist

• Protect against certain types of Social Engineering attacks

• Not designed to stop all infection
– Make persistence harder

– Prevent most current attacks

• Focus on usability
– A key challenge of many security mechanisms is the ability

for a typical user to understand and use it

Analysis of Existing Security Interface

• Users are asked questions they do not know how to answer
and presented with info that is difficult to understand

• Users are asked to make a decision too often

• Users are made to passively respond and provided an easy
and insecure way out

Design Principles

• Reduce – decrease the number of times users are

asked to make a decisions

• Simplify – ask questions that a user can understand

• Safe – do not provide an easy and insecure way out.

• Active – avoid passively respond to security prompts

Design of Personalized

Whitelisting

Normal Mode

• Only execute known software

• Trusted Signatures = add to

whitelist

• Trusted Installers = add to whitelist

• All else blocked

Installation Mode

• Execute all software

• Executed = added to whitelist

• Written = added to whitelist

• Try to exit installation mode quickly

 “Stopping” vs “Warning” approach

 The decision a user needs to make

 “Do I want to install new software now”

Design Principles in Practice

• Reduce – there is a single security decision to make
for installing any application

• Simplify – this paradigm more closely matches how
typical users understand their actions. “I’m adding
something new”

• Safe – Not allowing new code is the easiest action

• Active – In order to add new software, the user
needs to actively participate and initiate the action.

Installation Mode vs Normal Mode

• This dual mode can more closely match the

mental model of a typical user.

– Users may not understand “Do you want to allow this

program to make changes”

– But most can be educated about “Do you want to add

something new to your computer right now”

• Furthermore, users can be educated about when

not to enter installation mode.

The Burden Benefit of Installation

Mode

• Simple switch to installation mode
– Advantage – it’s easy

– Disadvantage – user may enter installation mode often

• High overhead switch to installation mode (ex.
reboot)
– Advantage – it makes a user less likely to switch unless

needed

– Disadvantage – high overhead may lead to annoyance

• Advantage of reboot
– Clear out memory, malware in memory can’t take

advantage of installation mode

– Minimal number of applications active just after reboot

User Study

• 35 person user study running CodeShield for 6 weeks

• Longest use of CodeShield is 203 days (8 switches, 25
days/switch), next is 168 days (13 switches, 13
days/switch).

• Participants sat through a 30 minute training session

• Then installed CodeShield (standalone installer)

• Take a survey, Run for 6 weeks, Take a survey

• Uninstall if they want to

• 7 of 38 participants continued to use CodeShield at least
3 months after study ended.
– 5 were using reboot only client

– 2 using switch or reboot

Switches to Installation Mode

• Switch

– Median - 17

– Useful - 13

• Reboot

– Median -

3.5

– Useful - 3.5

 0 5 10 15 20

0
1
0

2
0

3
0

4
0

Unique User

In
s
ta

lla
ti
o
n

 M
o

d
e

 S
w

it
c
h
e

s

Switch Group

Reboot Group

Installation Mode Switches

Readings for This Lecture

• RBAC96 Family

– R.S. Sandhu, E.J. Coyne, H.L.

Feinstein, and C.E. Youman.

“Role-Based Access Control

Models”. IEEE Computer,

29(2):38--47, February 1996.

http://en.wikipedia.org/wiki/Filesystem_permissions

Background: Role Based Access

Control
• Non-role-based systems

• Role-Based Access Control Systems (RBAC)

Alice Bob Carl Dave Eva

Windows

Account

Linux

Account

WebSphere

Account

DB2

Account

Users:

Permissions:

Alice Bob Carl Dave Eva

Windows

Account

Linux

Account

WebSphere

Account

DB2

Account

DB Admin Web Admin Software Developer

Users:

Roles:

Permissions:

ROLE-BASED ACCESS

CONTROL (RBAC)

• Motivating Problem: how to administer user-permission

relation

– Different from DAC and MAC, which deal with processes in

operating systems

• Roles as a level of indirection

– Butler Lampson or David Wheeler: "all problems in Computer

Science can be solved by another level of indirection"

• RBAC is multi-faceted and open ended

– Extensions: ARBAC (administrative), CBRAC (constraint), dRBAC

(dynamic), ERBAC (enterprise), fRBAC (flexible), GRBAC (generalized),

HRBAC (hierarchical), IRBAC (interoperability), JRBAC (Java), LRBAC

(Location), MRBAC (Management), PRBAC (privacy), QRBAC (QoS),

RRBAC(Rule), SRBAC(Spatial), TRBAC (temporal), V, W, x.

– Non extension: OrBAC

Why Roles?

• Fewer relationships to manage

– possibly from O(mn) to O(m+n), where m is the

number of users and n is the number of permissions

• Roles add a useful level of abstraction

• Organizations operate based on roles

• A role may be more stable than

– the collection of users and the collection of

permissions that are associated with it

Groups vs. Roles

• Depending on the precise definition, can be the same or
different.

• Some differences that may or may not be important,
depending on the situation
– Answer 1: sets of users vs. sets of users as well as permissions

– Answer 2: roles can be activated and deactivated, groups cannot

• Groups can be used to prevent access with negative
authorization.

• Roles can be deactivated for least privilege

– Answer 3: can easily enumerate permissions that a role has, but
not for groups

RBAC96 FAMILY OF

MODELS (Sandhu et al.)

RBAC0
BASIC RBAC

RBAC3
ROLE HIERARCHIES +

CONSTRAINTS

RBAC1
ROLE

HIERARCHIES

RBAC2
CONSTRAINTS

RBAC0

ROLES

USER-ROLE
ASSIGNMENT

PERMISSION-ROLE
ASSIGNMENT

USERS PERMISSIONS

... SESSIONS

PERMISSIONS

• Left abstract in the RBAC96 model

• Permissions are positive

• No negative permissions or denials

– RBAC defines a closed policy, i.e., all accesses are

denied unless they are explicitly authorized

• No duties or obligations

– Example obligation: can access patient document, but

must notify patient, or must delete after 30 days

RBAC0: Formal Model

• Vocabulary: U, R, P, S (users, roles, permissions, and
sessions)

• Static relations:
– PA  P × R (permission assignment)

– UA  U × R (user assignment)

• Dynamic relations:
– user: S  U each session has one user

– roles: S  2R and some activated roles

• requires roles(s)  { r | (user(s), r)  UA }

Session s has permissions

  r  roles(s) { p | (p, r)  PA }

RBAC1

ROLES

USER-ROLE
ASSIGNMENT

PERMISSION-ROLE
ASSIGNMENT

USERS PERMISSIONS

... SESSIONS

ROLE HIERARCHIES

HIERARCHICAL ROLES (ex 1)

Health-Care Provider

Physician

Primary-Care
Physician

Specialist
Physician

HIERARCHICAL ROLES (ex 2)

Engineer

Hardware
Engineer

Software
Engineer

Supervising
Engineer

Semantics of Role Hierarchies

• User inheritance

– r1r2 means every user that is a

member of r1 is also a member of r2

• Permission inheritance

– r1r2 means every permission that is

authorized for r2 is also authorized r1

• Activation inheritance

– r1r2 means that activating r1 will

also activate r2

Physician

Health-Care Provider

Permission and Activation inheritance have different

effect when there are constraints about activation.

RBAC1: Formal Model

• U, R, P, S, PA, UA, and user unchanged from RBAC0

• RH  R × R : a partial order on R, written as 

– When r1  r2, we say r1 is a senior than r1, and r2 is a junior than

r1

• roles: S  2R

– requires roles(s) 

 { r |  r’ [(r’  r) & (user(s), r’)  UA] }

Session s includes permissions

  r  roles(s) { p |  r’’ [(r  r’’) & (p, r’’)  PA] }

RBAC2: RBAC0 + Constraints

• No formal model specified

• Example constraints

– Mutual exclusion

– Pre-condition: Must satisfy some condition to be

member of some role

• E.g., a user must be an undergrad student before being

assigned the UTA role

– Cardinality

Mutual Exclusion Constraints

• Mutually Exclusive Roles
– Static Exclusion: No user can hold both roles

• often referred to as Static Separation of Duty constraints

• Preventing a single user from having too much
permissions

– Dynamic Exclusion: No user can activate both roles in
one session

• Often referred to as Dynamic Separation of Duty
constraints

• Interact with role hierarchy interpretation

Cardinality Constraints

• On User-Role Assignment

– at most k users can belong to the role

– at least k users must belong to the role

– exactly k users must belong to the role

• On activation

– at most k users can activate a role

– …

Why Using Constraints?

• For laying out higher level organization policy

– Only a tool for convenience and error checking when

admin is centralized

• Not absolutely necessary if admin is always vigilant, as

admin can check all organization policies are met when

making any changes to RBAC policies

– A tool to enforce high-level policies when admin is

decentralized

RBAC3

ROLES

USER-ROLE
ASSIGNMENT

PERMISSIONS-ROLE
ASSIGNMENT

USERS PERMISSIONS

... SESSIONS

ROLE HIERARCHIES

CONSTRAINTS

Products Using RBAC

• Data Base Management Systems (DBMS)

• Enterprise Security Management

– IBM Tivoli Identity Manager (central administration and

provisioning of accounts, resources, etc)

• Many operating systems claim to use roles

RBAC Economic Impact Study in

2002

• Based on interviews with software developers and
companies that integrate RBAC products into their
business operations (end users), the Research Triangle
Institute (RTI) estimates that by 2006 between 30 and 50
percent of employees in the service sector and between
10 and 25 percent of employees in the non-service
sectors will be managed by RBAC systems. RTI also
estimates that this degree of market penetration will
result in economic benefits to the U.S. economy through
2006 of approximately $671 million in net present value
terms. This estimate is conservative because it reflects
only the administrative and productivity benefits from
RBAC.

The NIST Standard

• Proposed NIST Standard for Role-Based Access

Control. David F. Ferraiolo, Ravi S. Sandhu,

Serban I. Gavrila, D. Richard Kuhn, and

Ramaswamy Chandramouli. TISSEC, August

2001.

• American National Standards Institute Standard,

2004

../../Fall03/papers/ferraiolo_etal_tissec01.pdf
../../Fall03/papers/ferraiolo_etal_tissec01.pdf
../../Fall03/papers/ferraiolo_etal_tissec01.pdf
../../Fall03/papers/ferraiolo_etal_tissec01.pdf

Overview of the NIST Standard for

RBAC

Dynamic
Separation
of Duties

Core RBAC

Hierarchical
RBAC

Static
Separation of
Duties

Our Critique of the ANSI RBAC

Standard

• Many errors

– Inheritance has been described in terms of permissions; i.e., r1

inherits r2 if all privileges of r2 are also privileges of r1. . . .

• mistake in cause-effect relationship

– define permission inheritance as “formally,

authorized_permissions(r) = {p  PRMS | r′  r, (p, r′)  PA}.”

• should be r  r’

– The standard defines r1 >> r2 (r1 is immediate parent role of r2)

when “there’s no role r3 in the role hierarchy such that r1  r3 

r2, where r1  r2 and r2  r3”

• should be r1  r3

• A number of other limitations and design flaws

Our Suggestions for Improving ANSI

RBAC Standard

• Remove sessions from core RBAC

• Accommodate single-role sessions

• Clearly distinguish based and derived relations

• Maintain role-domination relationships explicitly

• Clearly specify role-inheritance semantics

Whether to Allow Multiple Roles

to be Activated?

• RBAC96 allows this Multi Role Activation

• [Baldwin’90] does not

• Observations:

– one can define new role to achieve the effect of

activating multiple roles

– dynamic constraints are implicit when only one role

can be activated in a session

– Single-Role Activation is better

• easier to enforce least privilege

• better satisfies the fail-safe defaults principle

On Modeling Role Hierarchy As A

Partial Order

• Modeling RH as a partial
order may miss some
important information

• Consider the two examples
to the right
– where the dashed edge is

added and removed

• Better approach seems to
remember the base edges
and then compute their
transitive and reflexive
closure

r1

r3

r2

r1

r3

r2

EX1:

EX2:

Semantics of Role Hierarchies

• User inheritance

– r1r2 means every user that is a

member of r1 is also a member of r2

• Permission inheritance

– r1r2 means every permission that is

authorized for r2 is also authorized r1

• Activation inheritance

– r1r2 means that activating r1 will

also activate r2

Physician

Health-Care Provider

They interact with static and dynamic role mutual

exclusion constraints.

Coming Attractions …

• Database access control

