
1

Data Security and Privacy

Topic 7: Usable Integrity Protection

Readings

• Usable Mandatory Integrity Protection for

Operating Systems

– Ninghui Li, Ziqing Mao, and Hong Chen

In IEEE Symposium on Security and Privacy, May

2007.

• Combining Discretionary Policy with Mandatory

Information Flow in Operating Systems.

• Ziqing Mao, Ninghui Li, Hong Chen, Xuxian Jiang:

– ACM Trans. Inf. Syst. Secur. 14(3): 24:1-24:27(2011)

2

3

Motivation

• Host compromise by network-based attacks is

the root cause of many serious security

problems

– Worm, Botnet, DDoS, Phishing, Spamming

• Why hosts can be easily compromised

– Programs contain exploitable bugs

– The discretionary access control mechanism in the

operating systems was not designed to take buggy

software in mind

4

Six design principles for usable

access control systems <1>

• Principle 1: Provide “good enough” security with a high

level of usability; rather than “better” security with a low

level of usability

– Need to trade off “theoretical security” for usability

• Principle 2: Provide policy, not just mechanism

– Go against the UNIX “mechanism-but-not-policy” philosophy

• Principle 3: Have a well-defined security objective

– Simplify policy specification while achieving the objective

5

Six design principles for usable

access control systems <2>

• Principle 4: Carefully design ways to support exceptions in

the policy model

– Design exception mechanisms to the global MAC policy rules to

minimize attack surface

• Principle 5: Rather than trying to achieve “strict least

privilege”, aim for “good-enough least privilege”

– Aim also at minimizing policy specifications

• Principle 6: Use familiar abstractions in policy specification

interface

– Design for psychological acceptability

6

The UMIP Model: Security

Objective

• Protect against network-based attacks

– Network servers and client programs contain bugs

– Users may make careless mistakes, e.g., downloading malicious

software and running them

– Attacker does not have physical access to the host

• The security property we want to achieve

– The attacker cannot compromise the system integrity (except

through limited channels)

• E.g, install a RootKit, gain the root privileges

– The attacker can get limited privileges

• Run some code

– After a reboot, the attacker does not present any more

7

The UMIP Model: Usability

Objectives

• Easy policy configuration and deployment

• Understandable policy specification

• Nonintrusive: existing applications and common

usage practices can still be used

8

Basic UMIP Model

• Each process is associated with one bit to denote

its integrity level, either high or low

– A process having low integrity level might have been

contaminated

• A low-integrity process by default cannot perform

any sensitive operations that may compromise the

system

• Three questions

– How to do process integrity tracking?

– What are sensitive operations?

– What kinds of exceptions do we need?

9

Process Integrity Tracking

• Based on information flow

10

File Integrity Tracking

• Non-directory files have integrity tracking

– use the sticky bit to track whether a file has been

contaminated by a low-integrity process

– a file is low integrity if either it is not write-protected, or

its sticky bit is set

– the sticky bit can be reset by running a special utility

program in high integrity

• allow downloading and installing new programs

11

Sensitive Operations: Capabilities

• Non-file sensitive operations

– E.g., loading a kernel module, administration of IP

firewall,…

• Using the Capability system

– Break the root privileges down to smaller pieces

– In Linux Kernel 2.6.11, 31 different capabilities

• Identify each capability as one kind of non-file

sensitive operation

12

Sensitive Operations: File Access

• Asking users to label all files is a labor intensive and
error-prone process

• Our Approach: Use DAC information to identify sensitive
files

• Read-protected files
– Owned by system accounts and not readable by world

– E.g., /etc/shadow

• Write-protected files
– Not writable by world

– Including files owned by non-system accounts

13

Exception Policies: Process Integrity

Tracking

• Default policy for process integrity tracking

• Exceptions:

• Examples

– RAP programs: SSH Daemon

– LSP programs: X server, desktop manager

14

Exception Policies: Low-integrity

Processes Performing Sensitive Operations

• Some low-integrity processes need to perform sensitive

operations normally

• Exception:

• Examples:

– FTP Daemon Program: /usr/sbin/vsftpd

– Use capabilities: CAP_NET_BIND_SERVICE,

CAP_SYS_SETUID, CAP_SYS_SETGID, CAP_SYS_CHROOT

– Read read-protected files: /etc/shadow

– Write write-protected files: /etc/vsftpd, /var/log/xferlog

15

Implementation & Performance

• Implemented using Linux Security Module

– no change to Linux file system

• Performance

– Use the Lmbench 3 and the Unixbench 4.1

benchmarks

– Overheads are less than 5% for most benchmark

results

16

Part of the Sample Policy

17

Differences with Other Integrity

Models

• Use multiple policies from the Biba model

– subject low water for most subjects/processes

– ring policy for some trusted subjects

• e.g., ssh daemon, automatic update programs

– object low water for some objects

• Each object has a separate protection level and integrity

level

– integrity level for quality information

– protection level for important

• read protection level inferred from DAC permissions on read

• write protection level inferred from DAC permissions on write

18

Differences with Other Integrity

Models

• Other exceptions to formal integrity rules

– low integrity objects can be upgraded to high by a high

integrity subject

– low integrity subjects can access high protected

objects via exceptions

Limitation of UMIP

• Separates the system between network (low)

and system critical (high)

• What to do with normal user files?

– Treat them as low:

• User files are not protected

– Treat them at high

• Malicious users (or users with weak passwords) lead to

compromise of the protection

• Solution: Information Flow Enhanced

Discretionary Access Control (IFEDAC)

19

Principals in IFEDAC

• An entity that may potentially compromise the
system

• local users (DAC user accounts)

• Remote network traffic
– denoted as net

– represents the remote adversary

20

Integrity Levels in IFEDAC

21

Ø

{net} {alice} {bob}

{net,alice} {net, bob} {alice,bob}

{net,alice,bob}=

• Maintain an integrity level for each process & file

– A label is a a set of principals

– E.g., {alice}, Ø, {bob, net}, {net}, …

Integrity Level

• For a process, the label contains principals

– Who MAY have gained control over the process

• For a file, the label contains principals

– who have changed the content stored in the file

22

Integrity Level Tracking

• Track integrity levels using information flow

– p is newly created assign p’parent.IL to p.IL

– p receives network communication add {net} to p.IL

– p reads a file f add f.IL to p.IL

– p receives IPC data from p’ add p’.IL to p.IL

– p creates a file f assign p.IL to f.IL

– p writes to a file f add p.IL to f.IL

– p logs in a user u add {u} to p.IL

• Initial integrity level labeling

– The first process init.IL = top (Ø)

23

Integrity Level Examples

• For example

– Web server’s IL = {net}

– Alice’s email client’s IL = {net, Alice}

– A file saved from Alice’s email attachment has IL =

{net, Alice}

– pdf viewer’s IL = {Alice}

– pdf viewer’s IL after opens an email attachment = {net,

Alice}

24

File Protection Classes

• Each file has three protection classes

– Read protection class (rpc): who can read it

– Write protection class (wpc): who can write to it

– Admin protection class (apc): who can change its rpc

and wpc

– Each value is a set of principals

• Infer file protection classes from DAC policy

– f.rpc

• If f is world-readable, f.rpc =

• Otherwise, f.rpc = the set of users allowed to read f

– Same for wpc

– f.apc = {owner}
25

IFEDAC Policy

• An access is allowed if all principals in the process’s
IL are authorized

• A process p requests to access a file f
– Allow reading, if p.IL f.rpc

– Allow writing, if p.IL f.wpc

– Allow changing f.rpc, f.wpc and f.apc, if p.IL f.apc

• File’s integrity level can be explicitly changed by
user
– Only the owner of the file can change a file’s integrity

level, and only up to the int. level of the current process

• I.e.,f.IL to IL’, if p.IL f.apc and p.IL IL’

26

Exceptions

• Default policy too strict for real-world systems and

common practices

– it doesn’t assume any program to be correct

• In reality one has to trust the correctness of “some”

program, needs exceptions to the default policy

• Exceptions are associated with program binaries

• Exceptions imply some form of trust for programs

– The trusts are strictly limited and can be clearly

specified

27

What Protection Does IFEDAC Offer?

• Achieve the protection objective of DAC, i.e., all

allowed operations reflect the intention of

authorized users, under the following

assumptions

– Initially, the inferred file integrity levels are correct

– Initially, files are labeled with correct DAC policies

– Hardware is not compromised

– Kernel cannot be exploited in a critical way

– When a legitimate user intends to upgrade a file’s

integrity level (or update a file’s protection classes),

the decision is correct

– Exceptions are justified
28

Usage Case I: Email Client (cont’)

• John saves an email attachment B to /home/john/download

– B.IL = {john, net}

• John wants to install B to the system, so executes B as BP

– BP.IL = {john, net}

– BP cannot touch the system files, installation failed if

needs such access

– BP cannot access files that are not world accessible

(can change contents of B’s Internet directory)

• John really trusts B and wants to install it

– John login as an administrator (see below)

– John explicitly upgrades B.IL to top

• John executes B as BP’

– BP’.IL = top, installation succeed
29

Usage Case II: Administrator Login

• Linux allows normal users to perform system administration

through the sudo tool (sudoer)

• IFEDAC allows specifying privileged users, called sudoers

– Process’s IL maintains when a sudoer logins

• Sudoers’ files have wpc at {u} or lower

– Except the shell startup scripts with wpc at top

• .bash_rc, .bash_profile, .bash_history

• When a sudoer John logins

– John gets a shell with IL at top

– John can perform system administration in the shell

– Any descendant that reads john’s normal files will drop to IL {john}

– A utility program is provided to explicitly downgrade shell’s IL to {john}

30

Comparing IFEDAC with Biba (1)

• In Biba, an object has one integrity level

– Determines who can write to it, and how will it contaminates a

subject who reads

• In IFEDAC, an object has

– An integrity level, records quality of info in the object, and

ensures correct contamination tracking

– A write protection class, determines who can write it and protects

integrity of the object

– A read protection class, determines who can read it and protects

confidentiality of the object

• IFEDAC infers protection classes from DAC permissions

31

Comparing IFEDAC with Biba

• IFEDAC uses aspects of all five Biba policies

– Subject low water policy for majority of subjects

– Ring policy for selected subjects (i.e., RAP & LSP,

which are explicitly identifying trusted programs)

– Object low water policy when objects has low write

protection class (e.g., temporary files)

– Strict integrity for objects that have high write

protection class (e.g., critical binaries and

configuration files)

– Strict integrity protection for subject-subject interaction

32

Summary of IFEDAC

• DAC’s weakness lies in the enforcement
– The origin includes a single principal

– Failed to identify the true origins of a request

– Vulnerable to Trojan horse and buggy software

• But DAC’s policy is good
– Easy and intuitive to specify

– Sufficient to preserve the system integrity

• The approach
– Keep the DAC’s policy

– Fix the enforcement: identify the true origins of a
request

33

34

Coming Attractions …

• Role Based Access Control

