
1

Data Security and Privacy

Topic 4: Analysis of DAC’s

Weaknesses

Why Computers are Vulnerable?

• Programs are buggy

• Humans make mistakes

• Access control is not good enough

– Discretionary Access Control (DAC) used in Unix and

Windows assume that programs are not buggy

2

Access Control Check

• Given an access request, return an access control

decision based on the policy

– allow / deny

Access

Control Check
A Request Allow / Deny

The Policy

3

4

Discretionary Access Control

• No precise definition. Basically, DAC allows access

rights to be propagated at subject’s discretion

– often has the notion of owner of an object

– used in UNIX, Windows, etc.

• According to TCSEC (Trusted Computer System

Evaluation Criteria)

– "A means of restricting access to objects based on the identity

and need-to-know of users and/or groups to which they

belong. Controls are discretionary in the sense that a subject

with a certain access permission is capable of passing that

permission (directly or indirectly) to any other subject."

• Often compared to Mandatory Access Control

Analysis why DAC is not Good

enough

• DAC causes the Confused Deputy problem

– Solution: use capability-based systems

• DAC does not preseves confidentiality when facing

Trojan horses

– Solution: use Mandatory Access Control (BLP)

• DAC implementation fails to keep track of for which

principals a subject (process) is acting on behalf of

– Solution: fixing the DAC implementation to better keep track of

principals

5

The Confused Deputy Problem

6

SYSX/FORT $OUTPUT

Compiler Program

SYSX (Dir)

 FORT

 STAT

 BILL

Write to

the bill

file

System

Admin

$Output SYSX/BILL

Write

output

file

User

The Confused Deputy by Norm Hardy

7

Analysis of The Confused Deputy

Problem

• The compiler runs with authority from two

sources

– the invoker (i.e., the programmer)

– the system admin (who installed the compiler and

controls billing and other info)

• It is the deputy of two masters

• There is no way to tell which master the deputy is

serving when performing a write

• Solution: Use capability

8

ACCESS MATRIX MODEL

U
r w
own

V

F

S
u
b
j
e
c
t
s

Objects (and Subjects)

r w
own

G

r

rights

9

IMPLEMENTATION OF

AN ACCESS MATRIX

• Access Control Lists

– Encode columns

• Capabilities

– Encode rows

• Access control triples

– Encode cells

10

ACCESS CONTROL LISTS (ACLs)

F

U:r

U:w

U:own

G

U:r

V:r

V:w

V:own

each column of the access matrix is stored with
the object corresponding to that column

11

CAPABILITY LISTS

each row of the access matrix is stored with the
subject corresponding to that row

U F/r, F/w, F/own, G/r

V G/r, G/w, G/own

12

ACCESS CONTROL TRIPLES

Subject Access Object

 U r F

 U w F

 U own F

 U r G

 V r G

 V w G

 V own G

commonly used in relational DBMS

Different Notions of Capabilities

• Capabilities as a row representation of Access Matrices

• Capabilities used in POSIX/Linux as a way to divide the

root power into multiple pieces that can be given out

separately

• Capabilities as a way of implementing the whole access

control systems

– Subjects have capabilities, which can be passed around

– When access resources, subjects select capabilities to access

• An example is open file descriptors

– We will examine this last notion in more depth

13

More on Capability Based Access

Control

• Simulated by: a UNIX system where only owner of a file can open

the file, and file sharing is done by passing opened file descriptors

around

• Subjects have capabilities, which

– Give them accesses to resources

• E.g., like keys

– Are transferable and unforgeable tokens of authority

• Can be passed from one process to another

– Similar to opened file descriptors

• Why capabilities may solve the confused deputy

problems?

– When access a resource, must select a capability, which also

selects a master

 14

15

How the Capability Approach Solves

the Confused Deputy Problem

SYSX/FORT $OUTPUT

1 2 3

SYSX/ STAT SYSX/ BILL $OUTPUT

•Invoker must pass in a capability for $OUTPUT, which is

stored in slot 3.

•Writing to output uses the capability in slot 3.

•Invoker cannot pass a capability it doesn’t have.

Capability vs. ACL

• Consider two security mechanisms for bank accounts.

• One is identity-based. Each account has multiple

authorized owners. You go into the bank and shows your

ID, then you can access all accounts you are authorized.

– Once you show ID, you can access all accounts.

– You have to tell the bank which account to take money from.

• The other is token-based. When opening an account,

you get a passport to that account and a PIN, whoever

has the passport and the PIN can access

16

17

Capabilities vs. ACL: Ambient

Authority

• Ambient authority means that a user’s authority

is automatically exercised, without the need of

being selected.

– Causes the confused deputy problem

– Violates the least privilege principle

• No Ambient Authority in capability systems

18

Capability vs. ACL: Naming

• ACL systems need a namespace for objects

• In capability systems, a capability can serve both
to designate a resource and to provide authority.

• ACLs also need a namespace for subjects or
principals
– as they need to refer to subjects or principals

• Implications
– the set of subjects cannot be too many or too dynamic

– most ACL systems grant rights to user accounts
principals, and do not support fine-grained subject
rights management

19

Conjectures on Why Most Real-world

OS Use ACL, rather than Capabilities

• Capability is more suitable for process level

sharing, but not user-level sharing

– user-level sharing is what is really needed

• Processes are more tightly coupled in capability-

based systems because the need to pass

capabilities around

– programming may be more difficult

20

INHERENT WEAKNESS OF DAC

• Unrestricted DAC allows information flows
from an object which can be read to any other
object which can be written by a subject

– Suppose A is allowed to read some information
and B is not, A can reads and tells B

• Suppose our users are trusted not to do this
deliberately. It is still possible for Trojan
Horses to copy information from one object to
another.

21

TROJAN HORSE EXAMPLE

File F
A:r

A:w

File G
B:r

A:w

Principal B cannot read file F

ACL

22

TROJAN HORSE EXAMPLE

File F
A:r

A:w

File G
B:r

A:w

Principal B can read contents of file F copied to file G

ACL Principal A

Program Goodies

 Trojan Horse

executes

read

write

23

Buggy Software Can Become Trojan

Horse

• When a buggy software is exploited, it execute

the code/intention of the attacker, while using the

privileges of the user who started it.

• This means that computers with only DAC

cannot be trusted to process information

classified at different levels

– Mandatory Access Control is developed to address

this problem

– We will cover this in the next topic

DAC’s Weaknesses Caused by The

Gap

• A request: a subject wants to perform an action

– E.g., processes in OS

• The policy: each principal has a set of privileges

– E.g., user accounts in OS

• Challenging to fill the gap between the subjects

and the principals

– relate the subject to the principals

24

Unix DAC Revisited (1)

25

Action Process Effective

UID

Real

Principals

User A Logs In shell User A User A

Load Binary “Goodie”

Controlled by user B

Goodie User A ? ?

•When the Goodie process issues a request, what principal(s)

is/are responsible for the request?

•Under what assumption, it is correct to say that User A is

responsible for the request?

Assumption: Programs are benign, i.e., they only do

what they are told to do.

UNIX DAC Revisited (2)

26

Action Process Effective

UID

Real

Principals

 shell User A User A

Load AcroBat Reader Binary AcroBat User A User A

Read File Downloaded from

Network

AcroBat User A ? ?

•When the AcroBat process (after reading the file) issues a

request, which principal(s) is/are responsible for the request?

•Under what assumption, it is correct to say that User A is

responsible for the request?

Assumption: Programs are correct, i.e., they handle

inputs correctly.

Why DAC is vulnerable?

• Implicit assumptions

– Software are benign, i.e., behave as intended

– Software are correct, i.e., bug-free

• The reality

– Malware are popular

– Software are vulnerable

• The problem is not caused by the discretionary

nature of policy specification!

– i.e., owners can set policies for files

27

Why DAC is Vulnerable? (cont’)

• A deeper reason in the enforcement mechanism

– A single invoker is not enough to capture the origins of a process

• When the program is a Trojan

– The program-provider should be responsible for the requests

• When the program is vulnerable

– It may be exploited by input-providers

– The requests may be issued by injected code from input-

providers

• Solution: include input-providers as the principals

28

29

Coming Attractions …

• The Bell LaPadula Model

