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Data Security and Privacy 

Topic 4: Analysis of DAC’s 

Weaknesses 



Why Computers are Vulnerable? 

• Programs are buggy 

 

• Humans make mistakes 

 

• Access control is not good enough 

– Discretionary Access Control (DAC) used in Unix and 

Windows assume that programs are not buggy 
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Access Control Check 

• Given an access request, return an access control 

decision based on the policy 

– allow / deny 

Access 

Control Check 
A Request Allow / Deny 

The Policy 
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Discretionary Access Control 

• No precise definition.  Basically, DAC allows access 

rights to be propagated at subject’s discretion 

– often has the notion of owner of an object 

– used in UNIX, Windows, etc. 

• According to TCSEC (Trusted Computer System 

Evaluation Criteria)  

– "A means of restricting access to objects based on the identity 

and need-to-know of users and/or groups to which they 

belong. Controls are discretionary in the sense that a subject 

with a certain access permission is capable of passing that 

permission (directly or indirectly) to any other subject."  

• Often compared to Mandatory Access Control 



Analysis why DAC is not Good 

enough 

• DAC causes the Confused Deputy problem 

– Solution: use capability-based systems 

 

• DAC does not preseves confidentiality when facing 

Trojan horses 

– Solution: use Mandatory Access Control (BLP) 

 

• DAC implementation fails to keep track of for which 

principals a subject (process) is acting on behalf of 

– Solution: fixing the DAC implementation to better keep track of 

principals 
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The Confused Deputy Problem 
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The Confused Deputy by Norm Hardy  
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Analysis of The Confused Deputy 

Problem 

• The compiler runs with authority from two 

sources 

– the invoker (i.e., the programmer) 

– the system admin (who installed the compiler and 

controls billing and other info) 

• It is the deputy of two masters 

• There is no way to tell which master the deputy is 

serving when performing a write 

• Solution: Use capability 
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ACCESS MATRIX MODEL 
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IMPLEMENTATION OF  

AN ACCESS MATRIX 

• Access Control Lists 

– Encode columns 

• Capabilities 

– Encode rows 

• Access control triples 

– Encode cells 
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ACCESS CONTROL LISTS (ACLs) 
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each column of the access matrix is stored with 
the object corresponding to that column 
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CAPABILITY LISTS 

each row of the access matrix is stored with the 
subject corresponding to that row 

U F/r, F/w, F/own, G/r 

V G/r, G/w, G/own 
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ACCESS CONTROL TRIPLES 

Subject Access Object 
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 U  w  F 

 U  own  F 

 U  r  G 

 V  r  G 

 V  w  G 

 V  own  G 

commonly used in relational DBMS 



Different Notions of Capabilities  

• Capabilities as a row representation of Access Matrices 

• Capabilities used in POSIX/Linux as a way to divide the 

root power into multiple pieces that can be given out 

separately 

• Capabilities as a way of implementing the whole access 

control systems 

– Subjects have capabilities, which can be passed around 

– When access resources, subjects select capabilities to access 

• An example is open file descriptors 

– We will examine this last notion in more depth 
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More on Capability Based Access 

Control 

• Simulated by: a UNIX system where only owner of a file can open 

the file, and file sharing is done by passing opened file descriptors 

around 

• Subjects have capabilities, which 

– Give them accesses to resources 

• E.g., like keys 

– Are transferable and unforgeable tokens of authority 

• Can be passed from one process to another 

– Similar to opened file descriptors 

• Why capabilities may solve the confused deputy 

problems? 

– When access a resource, must select a capability, which also 

selects a master 
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How the Capability Approach Solves 

the Confused Deputy Problem 

SYSX/FORT   $OUTPUT 

 

 
1 2 3 

SYSX/ STAT SYSX/ BILL $OUTPUT 

•Invoker must pass in a capability for $OUTPUT, which is 

stored in slot 3. 

•Writing to output uses the capability in slot 3. 

•Invoker cannot pass a capability it doesn’t have. 



Capability vs. ACL 

• Consider two security mechanisms for bank accounts.  

• One is identity-based.  Each account has multiple 

authorized owners.  You go into the bank and shows your 

ID, then you can access all accounts you are authorized. 

– Once you show ID, you can access all accounts. 

– You have to tell the bank which account to take money from. 

 

• The other is token-based.  When opening an account, 

you get a passport to that account and a PIN, whoever 

has the passport and the PIN can access 
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Capabilities vs. ACL: Ambient 

Authority 

• Ambient authority means that a user’s authority 

is automatically exercised, without the need of 

being selected. 

– Causes the confused deputy problem 

– Violates the least privilege principle 

 

• No Ambient Authority in capability systems 
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Capability vs. ACL: Naming 

• ACL systems need a namespace for objects 

• In capability systems, a capability can serve both 
to designate a resource and to provide authority. 

• ACLs also need a namespace for subjects or 
principals 
– as they need to refer to subjects or principals 

• Implications 
– the set of subjects cannot be too many or too dynamic 

– most ACL systems grant rights to user accounts 
principals, and do not support fine-grained subject 
rights management 
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Conjectures on Why Most Real-world 

OS Use ACL, rather than Capabilities 

• Capability is more suitable for process level 

sharing, but not user-level sharing 

– user-level sharing is what is really needed 

 

• Processes are more tightly coupled in capability-

based systems because the need to pass 

capabilities around 

– programming may be more difficult 
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INHERENT WEAKNESS OF DAC 

• Unrestricted DAC allows information flows 
from an object which can be read to any other 
object which can be written by a subject  

– Suppose A is allowed to read some information 
and B is not, A can reads and tells B 

• Suppose our users are trusted not to do this 
deliberately.  It is still possible for Trojan 
Horses to copy information from one object to 
another. 
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TROJAN HORSE EXAMPLE 

File F 
A:r 

A:w 

File G 
B:r 

A:w 

Principal B cannot read file F 

ACL 
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TROJAN HORSE EXAMPLE 

File F 
A:r 

A:w 

File G 
B:r 

A:w 

Principal B can read contents of file F copied to file G 

ACL Principal A 

Program Goodies 
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Buggy Software Can Become Trojan 

Horse 

• When a buggy software is exploited, it execute 

the code/intention of the attacker, while using the 

privileges of the user who started it. 

 

• This means that computers with only DAC 

cannot be trusted to process information 

classified at different levels 

– Mandatory Access Control is developed to address 

this problem 

– We will cover this in the next topic 



DAC’s Weaknesses Caused by The 

Gap  

• A  request:  a subject wants to perform an action 

– E.g., processes in OS 

• The policy:  each principal has a set of privileges 

– E.g., user accounts in OS 

 

• Challenging to fill the gap between the subjects 

and the principals 

– relate the subject to the principals 
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Unix DAC Revisited (1) 
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Action Process Effective 

UID 

Real 

Principals 

User A Logs In shell User A User A 

Load Binary “Goodie” 

Controlled by user B 

Goodie User A ? ? 

•When the Goodie process issues a request, what principal(s) 

is/are responsible for the request? 

•Under what assumption, it is correct to say that User A is 

responsible for the request? 

Assumption: Programs are benign, i.e., they only do 

what they are told to do. 



UNIX DAC Revisited (2) 
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Action Process Effective 

UID 

Real 

Principals 

  shell User A  User A 

Load AcroBat Reader Binary AcroBat User A  User A 

Read File Downloaded from 

Network 

AcroBat User A ? ? 

•When the AcroBat process (after reading the file) issues a 

request, which principal(s) is/are responsible for the request? 

•Under what assumption, it is correct to say that User A is 

responsible for the request? 

Assumption: Programs are correct, i.e., they handle 

inputs correctly. 



Why DAC is vulnerable? 

• Implicit assumptions 

– Software are benign, i.e., behave as intended 

– Software are correct, i.e., bug-free 

• The reality 

– Malware are popular 

– Software are vulnerable 

• The problem is not caused by the discretionary 

nature of policy specification! 

– i.e., owners can set policies for files 
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Why DAC is Vulnerable? (cont’) 

• A deeper reason in the enforcement mechanism 

– A single invoker is not enough to capture the origins of a process 

• When the program is a Trojan 

– The program-provider should be responsible for the requests 

• When the program is vulnerable 

– It may be exploited by input-providers 

– The requests may be issued by injected code from input-

providers 

• Solution: include input-providers as the principals 
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Coming Attractions … 

• The Bell LaPadula Model 


