
1

Data Security and Privacy

Topic 3: Operating System Access

Control Enhancement

2

Readings for this lecture

• Readings

– On Trusting Trust

– wikipedia topics: Operating system-level virtualization,

Paravirtualization, Full virtualization

Outline

• Morris Worm as an example to illustrate the

limitation of UNIX DAC protection

• Virtualization/isolation approaches

• Create access control policies depend on

programs

3

4

Morris Worm

(November 1988)

• First major worm

• Written by Robert

Morris

– Son of former chief

scientist of NSA’s

National Computer

Security Center

What comes next: 1 11 21 1211 111221?

5

Morris Worm Description

• Two parts

– Main program to spread worm

• look for other machines that could be infected

• try to find ways of infiltrating these machines

– Vector program (99 lines of C)

• compiled and run on the infected machines

• transferred main program to continue attack

6

Vector 1: Debug feature of sendmail

• Sendmail

– Listens on port 25 (SMTP port)

– Some systems back then compiled it with DEBUG

option on

• Debug feature gives

– The ability to send a shell script and execute on the

host

7

Vector 2: Exploiting fingerd

• What does finger do?

• Finger output
arthur.cs.purdue.edu% finger ninghui

Login name: ninghui In real life: Ninghui Li

Directory: /homes/ninghui Shell: /bin/csh

Since Sep 28 14:36:12 on pts/15 from csdhcp-120-173 (9 seconds

idle)

New mail received Tue Sep 28 14:36:04 2010;

 unread since Tue Sep 28 14:36:05 2010

No Plan.

8

Vector 2: Exploiting fingerd

• Fingerd

– Listen on port 79

• It uses the function char *gets(char *)

– Fingerd expects an input string

– Worm writes long string to internal 512-byte buffer

• Overrides return address to jump to shell code

9

Vector 3: Exploiting Trust in Remote

Login

• Remote login on UNIX

– rlogin, rsh

• Trusting mechanism

– Trusted machines have the same user accounts

– Users from trusted machines

– /etc/host.equiv – system wide trusted hosts file

– /.rhosts and ~/.rhosts – users’ trusted hosts file

Host aaa.xyz.com

 /etc/host.equiv

 bbb.xyz.com

Host bbb.xyz.com

User alice
rlogin

10

Vector 3: Exploiting Trust in Remote

Login

• Worm exploited trust information

– Examining trusted hosts files

– Assume reciprocal trust

• If X trusts Y, then maybe Y trusts X

• Password cracking

– Worm coming in through fingerd was running as

daemon (not root) so needed to break into accounts

to use .rhosts feature

– Read /etc/passwd, used ~400 common password

strings & local dictionary to do a dictionary attack

11

Other Features of The Worm

• Self-hiding
– Program is shown as 'sh' when ps

– Files didn’t show up in ls

• Find targets using several mechanisms:

• 'netstat -r -n‘, /etc/hosts, …

• Compromise multiple hosts in parallel
– When worm successfully connects, forks a child to

continue the infection while the parent keeps trying
new hosts

• Worm has no malicious payload

• Where does the damage come from?

Damage

• One host may be repeatedly compromised

• Supposedly designed to gauge the size of the

Internet

• The following bug made it more damaging.

– Asks a host whether it is compromised; however, even

if it answers yes, still compromise it with probability

1/8.

12

13

How does a computer get infected with

malware or being intruded?

• Executes malicious code via user actions (email

attachment, download and execute trojan horses)

• Buggy programs accept malicious input

– daemon programs that receive network traffic

– client programs (e.g., web browser, mail client) that

receive input data from network

– Programs Read malicious files with buggy file reader

program

• Configuration errors (e.g., weak passwords, guest

accounts, DEBUG options, etc)

• Physical access to computer

Why is UNIX DAC insufficient?

• UNIX DAC is based on users.

• When attacker exploits the bug in a program and

takes over a program, it gets the privileges of the

user on whose behalf the program executes.

• UNIX DAC cannot different between benign and

malicious processes.

14

15

Defense

• Remove bugs from software

• Make bugs not exploitable

– reactive, many mechanisms, none perfect

• Make sure users do not make mistakes

• Make system withstand exploitable buggy

software and malicious software by additional

access control

– Confinement by virtualization

– Add access control policies that are based on

programs

Outline

• Morris Worm as an example to illustrate the

limitation of UNIX DAC protection

• Virtualization/isolation approaches

• Create access control policies depend on

programs

16

17

Confinement by Virtualization

(Option 1)

• Runs a single kernel, virtualizes servers on one

operating system using built-in mechanism

– e.g., chroot, FreeBSD jail, …

– used by service providers who want to provide low-

cost hosting services to customers.

– Pros: best performance, easy to set up/administer

– Cons: all servers are same OS, some confinement

can be broken

18

chroot

• The chroot system call changes the root

directory of the current and all child processes to

the given path.

• Using chroot

– creates a temporary root directory for a running

process,

– takes a limited hierarchy of a filesystem (say,

/chroot/named) and making this the top of the

directory tree as seen by the application.

– A network daemon program can call chroot itself, or a

script can call chroot and then start the daemon

19

Using chroot

• What are the security benefits?

– under the new root, many system utilities and

resources do not exist, even if the attacker

compromises the process, damage can be limited

– consider the Morris worm, how would using chroot for

fingerd affect its propagation?

• Examples of using chroot

– ftp for anonymous user

• How to set up chroot?

– need to set up the necessary library files, system

utilities, etc., in the new environment

20

Limitations of chroot

• Only the root user can perform a chroot.

– intended to prevent users from putting a setuid program inside a

specially-crafted chroot jail (for example, with a fake /etc/passwd

file) that would fool it into giving out privileges.

• chroot is not entirely secure on all systems.

– With root privilege inside chroot environment, it is sometimes

possible to break out

• process inside chroot environment can still see/affect all

other processes and networking spaces

• chroot does not restrict the use of resources like I/O,

bandwidth, disk space or CPU time.

21

Confinement by Virtualization

(Option 2)

• Virtual machines: emulate hardware in a user-
space process
– the emulation software runs on a host OS; guest OSes

run in the emulation software

– needs to do binary analysis/change on the fly

– e.g., VMWare, Microsoft Virtual PC

– Pros: can run other guest OS without modification to
the OS

– Cons: worst performance

22

Confinement by Virtualization

(Option 3)

• Paravirtualization
– No host OS, a small Virtual Machine Monitor runs on

hardware, guest OSes need to be modified to run

– Requires operating systems to be ported to run

– e.g., Xen

– Pros: better performance compared with (2), supports
more OSes compared with (1)

– Cons: each guest OS must be modified to run on it,
(each new version of the OS needs to be patched)

Limitation of Confinement by

Virtualization

• Pro. Policy is simple: just isolate each instance

• Con. Things within one virtual machine can still

affect each other.

23

Outline

• Morris Worm as an example to illustrate the

limitation of UNIX DAC protection

• Virtualization/isolation approaches

• Create access control policies depend on

programs

24

25

Program-Based Access Control

• For each process, there is an additional policy
limiting what it can do, which is based on the
binary file
– E.g., what system call it can make, what files it can

access, et.c

– This is in addition to the DAC restriction based on the
user ids

• The key challenge
– how to specify the policy

26

Example systems of Program-Based

Policies Access Control

• Systrace

– Create system call policies for programs

– http://www.citi.umich.edu/u/provos/systrace/

• Security Enhanced Linux (SELinux)

– initially developed by people in NSA

– shipped with Fedora and some other Linux distributions

– Also part of Android as Security Enhanced Android

• AppArmor

– shipped with SUSE Linux distributions

Systrace Overview

• Sandbox an application that could potentially be

controlled by an attacker

– E.g., a web server, an ftp server,

• Implemented by system call interposition

• Systrace constrains an application's access to the

system by specifying and enforcing system call

policies for programs

– One can create one or more policies for each program,

– When using exec, one can specify which policy to

apply.

27

Syscall: An Example Policy

Policy: /bin/ls, Emulation: native

 native-munmap: permit

[...]

 native-stat: permit

 native-fsread: filename match "/usr/*" then permit

 native-fsread: filename eq "/tmp" then permit

 native-fsread: filename eq "/etc" then deny[enotdir]

 native-fchdir: permit

 native-fstat: permit

 native-fcntl: permit

[...]

 native-close: permit

 native-write: permit

 native-exit: permit
28

Systrace Policy Generation

• Systrace notifies the user about all system calls

that an application tries to execute. The user

configures a policy for the specific system call

that caused the warning. After a few minutes, a

policy is generated that allows the application to

run without any warnings. However, events that

are not covered still generate a warning.

Normally, that is an indication of a security

problem.

29

SELinux

• Developed by National Security Agency (NSA)
and Secure Computing Corporation (SCC) to
promote MAC technologies

• MAC functionality is provided through the FLASK
architecture

• Can be applied to Unix-like operating systems,
such as Linux and BSD

• Available as a patch for 2.4 kernels

• Integrated into 2.6 kernels

30

FLASK

• Flux Advanced Security Kernel

• General MAC architecture

• Supports flexible security policies, “user friendly”
security language (syntax)

• Separates policies from enforcement

• Contains a Security Server and Object Managers

• Idea
– Consider more information when making access control

decisions

– Give fine-grain control

– Should an apache server load a kernel module?

 31

Policy: Domain-type Enforcement

• Each object is labeled by a type
– Object semantics

– Example:

• /etc/shadow etc_t

• /etc/rc.d/init.d/httpd httpd_script_exec_t

• Objects are grouped by object security classes
– Files, sockets, IPC channels, capabilities

– Operations are defined upon each security class

• Each subject (process) is associated with a domain
– httpd_t

– sshd_t

– sendmail_t

32

Policy: Domain-type Enforcement

• Access control decision
– When a process wants to access an object

– Process domain, object type, object security class,
operation

• Access vector rules
– allow sshd_t sshd_exec_t: file { read execute

entrypoint }

– allow sshd_t sshd_tmp_t: file { create read write
getattr setattr link unlink rename }

 33

Policy: Domain-type Enforcement

• How the domain is determined?
– The domain for a new process is based on the domain of

the parent process and the label for the executable binary

• How the type of a new file is determined?
– Based on the domain of the creating process and the

parent directory

• TE transition rules
– type_transition initrc_t sshd_exec_t: process sshd_t

– type_transition sshd_t tmp_t: notdevfile_class_set
sshd_tmp_t

34

SELinux in Practice

• Strict policy
– A system where everything is denied by default.

– Minimal privilege's for every daemon

– Separate user domains for programs like GPG,X, ssh, etc

– Difficult to enforce in general purpose operating systems

– Default in Fedora Core 2

– #1 Question: How do I turn off SELinux

• Targeted policy
– System where everything is allowed. use deny rules.

– Only restrict certain daemon programs

– Default in Fedora Core 3

– No protection for client programs

35

SubDomain (AppArmor)

• Provide a sufficiently fine-grained mechanism

• Try to achieve least privilege for programs

• Administrators specify the domain of activities

the program can perform

– Files, Operations

36

Example Profile

#include <tunables/global>

a comment naming the application to

confine

/usr/bin/foo

{

 #include <abstractions/base>

 capability setgid,

 network inet tcp,

 /bin/mount ux,

 /dev/{,u}random r,

 /etc/ld.so.cache r,

 /etc/foo.conf r,

 /etc/foo/* r,

 /lib/ld-*.so* mr,

 /lib/lib*.so* mr,

 /proc/[0-9]** r,

 /usr/lib/** mr,

/tmp/ r,

 /tmp/foo.pid wr,

 /tmp/foo.* lrw,

 /@{HOME}/.foo_file rw,

 /@{HOME}/.foo_lock kw,

 # a comment about foo's subprofile,

bar.

 ^bar {

 /lib/ld-*.so* mr,

 /usr/bin/bar px,

 /var/spool/* rwl,

 }

}

37

Sub-process confinement

• Scriptable servers, Loadable modules, Plug-ins

• Provide a system call: change_hat()

• Like sandboxing

• The developer should make appropriate calls

38

Compatibility

• Who write the profile?

– Vendors

– Administrators

• Which programs need to be confined?

– Policy

– All programs

– All listed user-ids

– All root programs

– Only specified programs

– All network programs

• How to generate the profile?

– Run, log, grant

– Tool: dep, strace

39

Next Topic

• Limitation of DAC: Theoretical Analysis

40

