
1

Data Security and Privacy

Unix Discretionary Access Control

2

Readings for This Lecture

• Wikipedia
• Filesystem Permissions

• Other readings
• UNIX File and Directory Permissions and Modes

• http://www.hccfl.edu/pollock/AUnix1/FilePermissions

.htm

• Unix file permissions

• http://www.unix.com/tips-tutorials/19060-unix-file-

permissions.html

http://en.wikipedia.org/wiki/Filesystem_permissions
http://www.hccfl.edu/pollock/AUnix1/FilePermissions.htm
http://www.hccfl.edu/pollock/AUnix1/FilePermissions.htm
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html

3

What Security Goals Does Operating

System Provide (Past)?

• Originally: time-sharing computers: enabling multiple

users to securely share a computer

– Separation and sharing of processes, memory, files, devices, etc.

• What is the threat model?

– Users may be malicious, users have terminal access to

computers, software may be malicious/buggy, and so on

• Security mechanisms

– Memory protection

– Processor modes

– User authentication

– File access control

4

What Security Goals Does Operating

System Provide (Recent Past and Current)?

• More recent past and present: Networked computers:

ensure secure operation in networked environment

• New threat?

– Attackers coming from the network. Network-facing programs on

computers may be buggy. Users may be hurt via online

communication.

• Security mechanisms

– Authentication; Access Control

– Secure Communication (using cryptography)

– Logging & Auditing

– Intrusion Prevention and Detection

– Recovery

What Security Goals Does Operating

System Provide (Current and Near Future)?

• Present and near future: mobile computing

devices:

• New threat?

– Apps (programs) may be malicious or questionable.

– More tightly connected with personal life of the owner.

• Security mechanisms?

– Isolation of each app.

– Help users assess risks of apps.

– Risk communication.

5

What is Access Control?

• Build a wall to prevent access, and then design a

guarded gate to decide what access should be

allowed.

6

7

Memory Protection: Access Control to

Memory

• Ensures that one user’s process cannot access
other’s memory
– fence

– relocation

– base/bounds register

– segmentation

– paging

– …

• Operating system and user processes need to
have different privileges

8

CPU Modes (a.k.a. processor modes or

privilege: A chip-enforced Wall

• System mode (privileged mode, master mode,

supervisor mode, kernel mode)

– Can execute any instruction

– Can access any memory locations, e.g., accessing

hardware devices,

– Can enable and disable interrupts,

– Can change privileged processor state,

– Can access memory management units,

– Can modify registers for various descriptor tables .

Reading: http://en.wikipedia.org/wiki/CPU_modes

9

User Mode

• User mode

– Access to memory is limited,

– Cannot execute some instructions

– Cannot disable interrupts,

– Cannot change arbitrary processor state,

– Cannot access memory management units

• Transition from user mode to system mode can

only happen via well defined entry points, i.e.,

through system calls

Reading: http://en.wikipedia.org/wiki/CPU_modes

10

System Calls (Guarded Gates)

• Guarded gates from user mode (space, land)
into kernel mode (space, land)
– use a special CPU instruction (often an interruption),

transfers control to predefined entry point in more
privileged code; allows the more privileged code to
specify where it will be entered as well as important
processor state at the time of entry.

– the higher privileged code, by examining processor
state set by the less privileged code and/or its stack,
determines what is being requested and whether to
allow it.

http://en.wikipedia.org/wiki/System_call

11

Kernel space vs User space

• Part of the OS runs in the kernel model

– known as the OS kernel

• Other parts of the OS run in the user mode,

including service programs (daemon programs),

user applications, etc.

– they run as processes

– they form the user space (or the user land)

• When they need privileged access that only

kernel can provide, they issue system calls.

Privilege Levels

• Security is often achieved by running

control/protection code at a higher privilege level

• Components running at the same level can be

isolated by a higher-privilege component

• If attack and defense are at the same level, then

it is an arms’ race and there can be no guarantee

12

13

Access control

• A reference monitor mediates all access to resources

– Principle: Complete mediation: control all accesses

to resources

Resource
User

process

Reference
monitor

access request

Policy ?

?

14

A Motivating Example

• In Linux/Unix, a process calls the system call

remove(“/d1/d2/f3”)

• How does the system decides whether to allow it
or not?

15

ACCESS MATRIX MODEL

U
r w
own

V

F

S
u
b
j
e
c
t
s

Objects (and Subjects)

r w
own

G

r

rights

16

ACCESS MATRIX MODEL

• Basic Abstractions

• Subjects

• Objects

• Rights

• The rights in a cell specify the access of

the subject (row) to the object (column)

17

The Need for PRINCIPALS:

 Beyond SUBJECTS

• A subject is a program (application)
executing on behalf of some principal(s)

• A principal is an entity to which the policy
grants access rights

• A principal may at any time be idle, or have
one or more subjects executing on its behalf

What are subjects in UNIX?

What are principals in UNIX?

18

USERS AND PRINCIPALS

USERS PRINCIPALS

Real World User
Unit of Access Control

and Authorization

the system authenticates the human user to
a particular principal

19

USERS AND PRINCIPALS

• There should be a one-to-many

mapping from users to principals

• a user may have many principals, but

• each principal is associated with an unique

user

• This ensures accountability of a user's

actions

What does the above imply in UNIX?

20

OBJECTS

• An object is anything on which a subject can
perform operations (mediated by rights)

• Usually objects are passive, for example:
• File

• Directory (or Folder)

• Memory segment

• But, subjects (i.e. processes) can also be objects,
with operations performed on them
• kill, suspend, resume, send interprocess

communication, etc.

21

Basic Concepts of UNIX Access Control:

Users, Groups, Files, Processes

• Each user account has a unique UID

– The UID 0 means the super user (system admin)

• A user account belongs to multiple groups

• Subjects are processes

– associated with uid/gid pairs, e.g., (euid, egid), (ruid,

rgid), (suid, sgid)

• Objects are files

22

Organization of Objects

• In UNIX, almost all objects are modeled as files
– Files are arranged in a hierarchy

– Files exist in directories

– Directories are also one kind of files

• Each object has
– owner

– group

– 12 permission bits

• rwx for owner, rwx for group, and rwx for others

• suid, sgid, sticky

23

UNIX

inodes:

Each file

corresponds

to an inode

24

UNIX Directories

25

Basic Permissions Bits on Files (Non-

directories)

• Read controls reading the content of a file

– i.e., the read system call

• Write controls changing the content of a file

– i.e., the write system call

• Execute controls loading the file in memory and

execute

– i.e., the execve system call

26

Permission Bits on Directories

• Read bit allows one to show file names in a directory

• The execution bit controls traversing a directory

– does a lookup, allows one to find inode # from file name

– chdir to a directory requires execution

• Write + execution control creating/deleting files in the

directory

– Deleting a file under a directory requires no permission on the file

• Accessing a file identified by a path name requires

execution to all directories along the path

27

Some Examples

• What permissions are needed to access a
file/directory?
– read a file: /d1/d2/f3

– write a file: /d1/d2/f3

– delete a file: /d1/d2/f3

– rename a file: from /d1/d2/f3 to /d1/d2/f4

– …

• File/Directory Access Control is by System Calls
– e.g., open(2), stat(2), read(2), write(2), chmod(2),

opendir(2), readdir(2), readlink(2), chdir(2), …

28

The Three Sets of Permission Bits

• Intuition:
– if the user is the owner of a file, then the r/w/x bits for

owner apply

– otherwise, if the user belongs to the group the file
belongs to, then the r/w/x bits for group apply

– otherwise, the r/w/x bits for others apply

• What are the other 3 bits? What do they control?

29

The suid, sgid, sticky bits

suid sgid sticky bit

non-

executable

files

no effect affect locking

(unimportant

for us)

not used

anymore

executable

files

change euid

when executing

the file

change egid

when executing

the file

not used

anymore

directories no effect new files inherit

group of the

directory

only the

owner of a

file can

delete

30

Other Issues On Objects in UNIX

• Accesses other than read/write/execute

– Who can change the permission bits?

• The owner can

– Who can change the owner?

• Only the superuser

• Rights not related to a file

– Affecting another process

– Operations such as shutting down the system,

mounting a new file system, listening on a low port

• traditionally reserved for the root user

31

Subjects vs. Principals

• Access rights are specified for user accounts

(principals).

• Accesses are performed by processes (subjects)

• The OS needs to know on which user accounts’

behalf a process is executing

• How is this done in Unix?

32

UNIX Access Control Overview

• Three concepts Our terminology
– Human Users Humans

– User Accounts Users/accounts/principals

– Process Processes/subjects

• UNIX Access Control System has
– A discretionary policy specification

• determines which user accounts have access to which
objects

– A policy enforcement component

• determines on which user’s behalf a subject (process) is
acting upon

33

Process User ID Model in Modern

UNIX Systems

• Each process has three user IDs

– real user ID (ruid) owner of the process

– effective user ID (euid) used in most access

 control decisions

– saved user ID (suid)

• and three group IDs

– real group ID

– effective group ID

– saved group ID

34

Process User ID Model in Modern

UNIX Systems

• When a process is created by fork

– it inherits all three users IDs from its parent process

• When a process executes a file by exec

– it keeps its three user IDs unless the set-user-ID bit of

the file is set, in which case the effective uid and

saved uid are assigned the user ID of the owner of the

file

• In addition, a process may change the user ids

via system calls

35

The Need for suid/sgid Bits

• Some operations are not modeled as files and
require user id = 0
– halting the system

– bind/listen on “privileged ports” (TCP/UDP ports below
1024)

– non-root users need these privileges

• File level access control is not fine-grained
enough

• System integrity requires more than controlling
who can write, but also how it is written

36

Security Problems of Programs with

suid/sgid

• These programs are typically setuid root

• Violates the least privilege principle

– every program and every user should operate using

the least privilege necessary to complete the job

• Why violating least privilege is bad?

• How would an attacker exploit this problem?

• How to solve this problem?

37

Changing effective user IDs

• A process that executes a set-uid program can

drop its privilege; it can

– drop privilege permanently

• removes the privileged user id from all three user IDs

– drop privilege temporarily

• removes the privileged user ID from its effective uid but

stores it in its saved uid, later the process may restore

privilege by restoring privileged user ID in its effective

uid

38

login

pid 2235

euid 0

ruid 0

suid 0

login

pid 2235

euid 500

ruid 500

suid 500

setuid(500)

After the login

process verifies

that the entered

password is

correct, it issues

a setuid system

call.

bash

pid 2235

euid 500

ruid 500

suid 500

exec(“bash”)

The login

process then

loads the

shell, giving

the user a

login shell.

fork()

The user

types in the

passwd

command to

change his

password.

What Happens during Logging in

39

bash

pid 2235

euid 500

ruid 500

suid 500

bash

pid 2297

euid 500

ruid 500

suid 500

passwd

pid 2297

euid 0

ruid 500

suid 0

exec(“passwd”)

The fork call creates a new

process, which loads “passwd”,

which is owned by root user, and

has setuid bit set.

passwd

pid 2297

euid 500

ruid 500

suid 0

passwd

pid 2297

euid 500

ruid 500

suid 500

Drop

privilege

temporarily

Drop

privilege

permanently

Issues to Consider in Designing an

Access Control System
• What are the objects? How are they organized?

• What are the subjects? What are the principals?

• How to relate subjects to principals?

• Whether/how to map human users to principals?

• What kinds of operations subjects can perform on objects?

• Where to store the access control policy data?

• How can access control policy data be updated? How to

control the update operation?

• How to intercept access to perform the check? Are all

access path covered?

• What are the limitations of the protection, i.e., what does it

take to break the protection? How to deal with such

residue threats?

40

41

Coming Attractions …

• How to deal with the threat of

malicious and/or buggy software

to enforcing access control

policies?

