CS590U Access Control: Theory and Practice

Lecture 20 (March 30) Overview of Trust Management

Distributed Authorization

- Flexible and scalable access control in largescale, open, distributed, decentralized systems
 - electronic commerce:
 - transaction authorization
 - application-level / business-policy authorization
 - resource sharing in decentralized systems
 - coalitions, multi-centric collaborative systems
 - grid computing
 - health care
 - and so on

Characteristics of Distributed Authorization

- No central administration, each service makes its own decision
- No relationship between a service and a user prior to a request
 - knowing a user's name may not help
 - must rely on information from third-party to make authorization decision (delegation)
- Authorization information is distributed
- Communication channels may be insecure

Trusts ABU to certify universities

Alice

Alice is a student

ABU

StateU is a university

StateU

The Trust-Management (TM) Approach

Multicentric access control using delegation

- access control decisions are based on distributed policy statements issued by multiple principals
- policy statements contain
 - attributes of principals such as permissions, roles, qualifications, characteristics
 - trust relationships

Common characteristics of TM systems

- Use public-key certificates for non-local statements
- Treat public keys as principals to be authorized
 - authentication consists of verifying signatures
- Adopt a peer model
 - an entity can be an authorizer, a requester, or a credential provider (trusted 3rd party)
- Treat the authorization decision problem as an application-independent proof-of-compliance problem

Public-Key Certificates

- A certificate is a data record together with a digital signature
- A certificate is signed using K⁻¹
 - we say that it is issued by a public key K
- A certificate binds some information to another public key (the subject key)
- Can be verified by anyone who knows the issuer's public key
 - can one trust the issuer's public key?

Existing Kinds of Public Key Infrastructures (PKIs)

- X.509 certificates
 - certificates are issued (signed) by certification authorities (CA's).
 - CA's may be arranged in a hierarchy
 - certificates form a chain
 - used by numerous applications: SSL, IPSec, etc.
- PGP
 - everyone can issue certificates, which bind email addresses to public keys

Early Trust Management Langugaes

- PolicyMaker
 - Blaze, Feigenbaum & Lacy: "Decentralized Trust Management", S&P'96.
 - Blaze, Feigenbaum & Strauss: "Compliance-Checking in the PolicyMaker Trust Management System", FC'98.
- KeyNote
 - Blaze, Feigenbaum, Ioannidis & Keromytis: "The KeyNote Trust-Management System, Version 2", RFC 2714.
- SPKI (Simple Public Key Infrastructure) / SDSI (Simple Distributed Security Framework)
 - Rivest & Lampson: SDSI A Simple Distributed Security Infrastructure, Web-page 1996.
 - Ellison et al.: SPKI Certificate Theory, RFC 2693.
 - Clarke et al.: Certificate Chain Discovery in SPKI/SDSI, JCS01.

Datalog-based Trust Management Languages

- Delegation Logic
 - Li, Grosof & Feigenbaum: "Delegation Logic: A Logic-based Approach to Distributed Authorization", TISSEC'03. (Conference versions appeared in CSFW'99 and S&P'00)
- SD3 (Secure Dynamically Distributed Datalog)
 - Jim: "SD3: A Trust Management System with Certified Evaluation", S&P'01.
- Binder
 - DeTreville: "Binder, a Logic-Based Security Language", S&P'02.
- RT: A Family of Role-based Trust-management Languages
- PeerTrust

Other Closely Related Logicbased Security Languages

ABLP logic (Abadi, Burrows, Lampson, et al.)

- Lampson et al.: "Authentication in Distributed Systems: Theory and Practice", TOCS'92.
- Abadi et al.: "A Calculus for Access Control in Distributed Systems", TOPLAS'93.
- QCM (Query Certificate Managers)
 - Gunter & Jim: "Policy-directed Certificate Retrieval", SPE'00
- AF logic
 - Appel & Felton: "Proof-Carrying Authentication", CCS'99

Issues in Designing Trust Management Languages

- Say what you want
 - succinctly and directly
 - with confidence that you said what you meant
- Enforcement
 - deduction, proof of compliance
- Policy development tools
 - manage policy lifecycle
 - analysis of safety, availability, and other security properties

Decentralized Trust Management

Matt Blaze, Joan Feigenbaum, Jack Lacy Oakland'1996 Cited 439 times from Google Scholar

The PolicyMaker Language

- A query has the form
 - K₁, K₂, …, K_n REUESTS ActionString
- Policies & credentials are encoded as assertions of the form
 - Source ASSERTS AuthorityStruct WHERE Filter
 - Source is either a public key or the keyword LOCAL
 - AuthorityStruct is a key, a list of keys, or a k-out-of-n threshold structure
 - Filter is a program that can be safety interpreted, it may be
 - a predicate, that returns yes/no
 - an annotator, returns yes/no and add to ActionString

Certificate chain discovery in SPKI/SDSI

Clarke et al. JCS 2001

History of SPKI/SDSI

- SDSI (Simple Distributed Security Infrastructure)
 - SDSI 1.0 and 1.1
 - Rivest & Lampson 96
- SPKI (Simple Public Key Infrastructure)
 - SPKI 1.0 (Ellison 1996)
- SPKI/SDSI 2.0
 - RFC 2693 [1999]
 - [Clarke et al. JCS'01]

An Example in SDSI 2.0

- SDSI Certificates
 - (K_c access ⇒ K_c mit faculty secretary)
 - (K_C mit ⇔ K_M)
 - (K_M faculty $\Rightarrow K_{EECS}$ faculty)
 - (K_{EECS} faculty $\Rightarrow K_{Rivest}$)
 - (K_{Rivest} secretary \Rightarrow K_{Rivest} alice)
 - (K_{Rivest} alice $\Rightarrow K_{Alice}$)
- From the above certificates, K_C concludes that K_{Alice} has access

4-tuple Reduction in RFC 2693

- Name strings can be reduced using 4-tuples
 - $(K_1 A_1 \Rightarrow K_2)$ reduces $K_1 A_1 A_2 \dots A_n''$ to $K_2 A_2 \dots A_n''$
 - e.g., (K_C mit ⇒ K_M) reduces "K_C mit faculty secretary" to "K_M faculty secretary"
 - $(K_1 A_1 \Rightarrow K_2 B_1 \dots B_m)$ reduces " $K_1 A_1 A_2 \dots A_n$ " to " $K_2 B_1 \dots B_m A_2 \dots A_n$ "
 - e.g., (K_M faculty ⇒ K_{EECS} faculty) reduces "K_M faculty secretary" to "K_{EECS} faculty secretary"

Applying 4-tuple Reduction in the Example

 From (K_C access) to (K_C mit faculty secretary) to (K_M faculty secretary) to (K_{EECS} faculty secretary) to (K_{Rivest} secretary) to (K_{Rivest} alice) to (K_{Alice})

Papers on Semantics for SPKI/SDSI

- Develop specialized modal logics
 - Abadi: "On SDSI's Linked Local Name Spaces", CSFW'97, JCS'98.
 - Halpern & van der Meyden:
 - "A logic for SDSI's linked local name spaces", CSFW'99, JCS'01
 - "A Logical Reconstruction of SPKI", CSFW'01, JCS'03
 - Howell & Kotz: "A Formal Semantics for SPKI", ESORICS'00
- Other approaches
 - Li: "Local Names in SPKI/SDSI", CSFW'00
 - Jha & Reps: "Analysis of SPKI/SDSI Certificates Using Model Checking", CSFW'02
 - Li & Mitchell: "Understanding SPKI/SDSI Using First-Order Logic", CSFW'03, IJIS'2005

Concepts in SDSI

- Concepts
 - principals
 - identifiers
 - local names
 - name strings

K, K₁ A, B, A₁ e.g., mit, faculty, alice K A, K₁ A₁ e.g., K_M faculty, K_{Rivest} alice K A₁ A₂ ... A_n ω , ω_1 e.g., K_C mit faculty secretary

Statements in SDSI

- 4-tuple (K, A, ω, V)
 - K is the issuer principal
 - A is an identifier
 - ω is a name string
 - V is the validity specification
- We write (K A $\Rightarrow \omega$) for a 4-tuple
 - ignoring validity specification

A Rewriting Semantics for SDSI

- A set P of 4-tuples defines a set of rewriting rules, denoted by RS[P]
- Queries have the form "can ω_1 rewrite into ω_2 ?"
- Answer a query is not easy.
 - cannot naively search for all ways of rewriting ω_1 , as there may be recursions
 - e.g., (K friend ⇔ K friend friend)
- What can we do?

Deduction Based on the Rewriting Semantics (1)

- Limit queries to the form "can ω_1 rewrite into K?"
 - In [Clarke et al.'01], the following closure mechanism is used
 - rewrite 4-tuples
 - e.g., apply (K_C mit $\Rightarrow K_M$) to rewrite (K_C access $\Rightarrow K_C$ mit faculty secretary), one gets (K_C access $\Rightarrow K_M$ faculty secretary)
 - compute the closure of a set of 4-tuples,
 - obtained by applying 4-tuples that rewrites to a principal
 - then use the resulting shortening 4-tuples to rewrite ω_1
 - Search is not goal-directed

Deduction Based on the Rewriting Semantics (2)

- Limit to queries like "can ω_1 rewrite into K?"
 - In [Li CSFW'00], the following XSB logic program is given

Deduction Based on the Rewriting Semantics (3)

- [Li, Winsborough & Mitchell, JCS'03]
 - develop a graph-based search algorithm for a language RT₀, a superset of SDSI
 - combines bottom-up search and goal-directed topdown search with tabling specifically for the kind of rules in RT₀
 - can deal with distributed discovery
 - we will talk about this later

Deduction Based on the Rewriting Semantics (4)

- Use techniques for model checking pushdown systems [Jha & Reps CSFW'02]
 - SDSI rewriting systems correspond to string rewriting systems modeled by pushdown systems
 - algorithms for model checking pushdown systems can be used
 - takes time O(N^3), where N is the total size of the SDSI statements

State: K₁

State: K₂

A name string corresponds to a configuration "rewrites into" equivalent to "reaches"

Recap of the Rewriting-based Semantics

- Defines answers to queries having the form "can ω_1 rewrite into ω_2 ?"
- Specialized algorithms (either developed for SDSI or for model checking pushdown systems) are needed
- Papers by Abadi and Halpern and van der Meyden try to come up with axiom systems for the rewriting semantics

Distributed Credential Chain Discovery in RT0