CS590U Access Control: Theory and Practice

Lecture 14 (February 24) Basics of Logic and Logic Programming

What is Logic?

- Formulas
- Syntactical approach
 - define how to derive new formulas from existing ones
 - Γ |-- φ
- Semantic approach
 - define when a formula is a logical implication of other formulas

Γ |= φ

Example Logic Formulas

- From
 - $\forall X \forall Y (mother(X) \land child_of(Y,X) \Rightarrow loves(X,Y)$
 - mother(mary)
 - child_of(tom,mary)
- Conclude
 - loves(mary,tom)

Kinds of Logic

- Propositional logic
 - classical, intuitionistic
- First order logic (predicate logic)
 - classical, intuitionistic
- Second order logic
- Modal logic

Propositional Logic

- AND
 - \vee OR $p \lor q$ equivalent with $\neg(\neg p \land \neg q)$ • \neg NOT
- \Rightarrow p \Rightarrow q equivalent with \neg p \lor q
- \Leftrightarrow $p \Leftrightarrow q$ means $p \Rightarrow q \land q \Rightarrow p$
- Well formed formulas
 - a variable is a wff
 - $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\neg \phi)$, $(\phi \Rightarrow \psi)$, $(\phi \Leftrightarrow \psi)$ are wff's

Semantics of Propositional Logic

- A valuation of a formula ϕ is a truth assignment for every variable in ϕ
 - one can then evaluate $\boldsymbol{\phi}$
- A valuation of a formula ϕ is a model of ϕ if ϕ evaluates to true
- $\phi_1, ..., \phi_n \models \psi$ iff ψ is true in every model of $\phi_1, ..., \phi_n$
- A formula ϕ is satisfiable iff it has one model
- A formula ϕ is valid iff every valuation of it is a model for it

Conjunctive Normal Form

- Conjunctive Normal Form
- A formula is represented as conjunctions of disjunctions
- Checking validity of formulas in CNF is easy, but checking satisfiability is NP-complete

Horn Clauses

- A formula in CNF where each conjunct has 0 or 1 positive literal
 - p₁ a fact
 - $p_1 \lor \neg p_2 \lor \ldots \lor \neg p_n$ • i.e., $p_1 \Leftarrow p_2 \land \ldots \land p_n$ a rule
 - $\neg p_1 \lor \neg p_2 \lor ... \lor \neg p_n$ ■ i.e., $\Leftarrow p_2 \land ... \land p_n$ a query
- Satisfiability of a formula in horn clauses can be decided in linear time

Predicate Logic

- An alphabet consists of predicates, constants, and variables
 - in ∀X ∀Y (mother(X)∧child_of(Y,X) ⇒loves(X,Y))
 ∧ mother(mary) ∧ child_of(tom,mary)
 - mother, child_of, loves are predicates
 - mary and tom are constants
 - X and Y are variables
 - \forall and \exists are quantifiers
- We ignore function symbols for this lecture

Closed Formulas (Sentences)

- Given a formula φ, the occurrence of a variable X is bound if it is inside the scope of a quantifier ∀X or ∃X. Otherwise, the occurrence if free.
- A formula with no free occurrences of variables is said to be closed.
 - a closed formula is also known as a sentence.
- A formula with no variable is said to be ground.

Semantics of Predicate Logic

- A formula is just a string that can be parsed to a syntax tree
- A structure is a domain together with a set of relations (ignoring functions)
- An interpretation I of an alphabet maps
 - each constant to an element in the domain
 - each n-ary predicate to a relation

Semantics of Predicate Logic

Given an interpretation I,

- ∀X φ evaluates to true iff for every element in I, φ with every free occurrence of X replaced by evaluates to true
- ∃X φ evaluates to true iff there exists an element in I, φ with every free occurrence of X replaced by evaluates to true
- p(c₁,c₂,...,c_n) evaluates to true iff (c₁,c₂,...,c_n) is in the relation that p maps to

Models and Logical Consequence

- Given a set P of closed formulas, an interpretation I,
 I is a model of P iff every formula in P is true in I.
- A formula is unsatisfiable if it doesn't have a model
- Logical consequence: φ is a logical consequence of P iff φ is true in every model of P, written as P |= φ .
- Proving P |= ϕ may be difficult, one way is to prove that P $\cup \neg \phi$ is unsatisfiable

Slide 13

MSOffice1 , 2/23/2005

Logical Inference

- Using rules to manipulate formulas to determine whether φ follows from P.
- Soundness and completeness

Logic Programming

- Rooted in Automated Theorem Proving
 - see an example
- The program consists of clauses
 - how to express grandchild in terms of child

Definite Clauses

- A definite clause has the form
 - $\bullet \ A_0 \ \leftarrow A_1 \land ... \land A_n \qquad \text{ where } n \ge 0$
 - When n=0, it is a fact
 - Otherwise, it is a rule
- Logical atoms, literals, clauses
- A define program is a finite set of definite clauses
- A definite goal has the form $\leftarrow A_1 \land \dots \land A_n$
- The programmer has an intended model; the program describes features of the model. The programmer wants to know properties of the intended model
- The evaluation engine must be sound

The Least Herbrand Model

- Given an alphabet A, the Herbrand universe consists of all ground terms that can be constructed using symbols from A
 - when A doesn't contain any function symbols, the Herbrand universe is simply the set of all constants in A
- The Herbrand base consists of all ground atoms over A

Herbrand Model

- Herbrand interpretation
 - essentially a subset of the Herbran base, saying which ground atoms are true
- A Herbrand model of a program is a Herbrand interpretation such that every clause is true in it

Why Herbrand Model?

- Theorem: Let P be a definite program and G a definite goal, if P∪{G} has a model, then P∪{G} has a Herbrand model
- Corollary: if P∪{G} does not have a Herbrand model, then P ⊨ ¬ G.
- Thus, one only need to check whether G is false in all Herbrand models of P to determine whether ¬ G is true
- Theorem: Given two Herbrand model of a definite program, their intersection is also a Herbrand model

The Least Herbrand Model

- Theorem: There exists a unique least Herbrand model.
- Theorem: The least Herbrand model is the set of all ground atomic logical consequences of the program.

Construction of the Least Herbrand Model

- Using the immediate consequence operator
- The least fixpoint of the immediate consequence operator is the least Herbrand Model.

Overview of Trust Management