CS590U
Access Control: Theory and Practice

Lecture 14 (February 24)
Basics of Logic and Logic Programming
What is Logic?

- Formulas
- Syntactical approach
 - define how to derive new formulas from existing ones
 - \(\Gamma |\rightarrow \varphi \)
- Semantic approach
 - define when a formula is a logical implication of other formulas
 - \(\Gamma |\models \varphi \)
Example Logic Formulas

From
- $\forall X \forall Y (mother(X) \land child_of(Y,X) \Rightarrow loves(X,Y))$
- mother(mary)
- child_of(tom,mary)

Conclude
- loves(mary,tom)
Kinds of Logic

- Propositional logic
 - classical, intuitionistic
- First order logic (predicate logic)
 - classical, intuitionistic
- Second order logic
- Modal logic
Propositional Logic

- \land AND
- \lor OR $p \lor q$ equivalent with $\neg(\neg p \land \neg q)$
- \neg NOT
- \rightarrow $p \rightarrow q$ equivalent with $\neg p \lor q$
- \leftrightarrow $p \leftrightarrow q$ means $p \rightarrow q \land q \rightarrow p$

Well formed formulas
- a variable is a wff
- $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\neg \varphi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$ are wff’s
Semantics of Propositional Logic

- A valuation of a formula φ is a truth assignment for every variable in φ
 - one can then evaluate φ
- A valuation of a formula φ is a model of φ if φ evaluates to true
- $\varphi_1, \ldots, \varphi_n \models \psi$ iff ψ is true in every model of $\varphi_1, \ldots, \varphi_n$
- A formula φ is satisfiable iff it has one model
- A formula φ is valid iff every valuation of it is a model for it
Conjunctive Normal Form

- Conjunctive Normal Form
- A formula is represented as conjunctions of disjunctions

- Checking validity of formulas in CNF is easy, but checking satisfiability is NP-complete
Horn Clauses

- A formula in CNF where each conjunct has 0 or 1 positive literal
 - p_1 a fact
 - $p_1 \lor \neg p_2 \lor \ldots \lor \neg p_n$
 - i.e., $p_1 \iff p_2 \land \ldots \land p_n$ a rule
 - $\neg p_1 \lor \neg p_2 \lor \ldots \lor \neg p_n$
 - i.e., $\iff p_2 \land \ldots \land p_n$ a query

- Satisfiability of a formula in horn clauses can be decided in linear time
Predicate Logic

- An alphabet consists of predicates, constants, and variables
 - in $\forall X \forall Y \ (\text{mother}(X) \land \text{child}_\text{of}(Y,X) \Rightarrow \text{loves}(X,Y))$
 - $\land \text{mother}(\text{mary}) \land \text{child}_\text{of}(\text{tom},\text{mary})$
 - mother, child_of, loves are predicates
 - mary and tom are constants
 - X and Y are variables
 - \forall and \exists are quantifiers

- We ignore function symbols for this lecture
Closed Formulas (Sentences)

- Given a formula φ, the occurrence of a variable X is **bound** if it is inside the scope of a quantifier $\forall X$ or $\exists X$. Otherwise, the occurrence is **free**.
- A formula with no free occurrences of variables is said to be **closed**.
 - A closed formula is also known as a **sentence**.
- A formula with no variable is said to be **ground**.
A formula is just a string that can be parsed to a syntax tree.

A structure is a domain together with a set of relations (ignoring functions).

An interpretation I of an alphabet maps:
- each constant to an element in the domain.
- each n-ary predicate to a relation.
Semantics of Predicate Logic

- Given an interpretation I,

 - $\forall X \varphi$ evaluates to true iff for every element in I, φ with every free occurrence of X replaced by evaluates to true

 - $\exists X \varphi$ evaluates to true iff there exists an element in I, φ with every free occurrence of X replaced by evaluates to true

 - $p(c_1,c_2,...,c_n)$ evaluates to true iff $(c_1,c_2,...,c_n)$ is in the relation that p maps to
Models and Logical Consequence

- Given a set P of closed formulas, an interpretation I, I is a model of P iff every formula in P is true in I.
- A formula is unsatisfiable if it doesn’t have a model.
- Logical consequence: φ is a logical consequence of P iff φ is true in every model of P, written as $P \models \varphi$.
- Proving $P \models \varphi$ may be difficult, one way is to prove that $P \cup \neg \varphi$ is unsatisfiable.
Logical Inference

- Using rules to manipulate formulas to determine whether φ follows from P.
- Soundness and completeness
Logic Programming

- Rooted in Automated Theorem Proving
 - see an example
- The program consists of clauses
 - how to express grandchild in terms of child
Definite Clauses

- A definite clause has the form
 - $A_0 \leftarrow A_1 \land \ldots \land A_n$ where $n \geq 0$
 - When $n=0$, it is a fact
 - Otherwise, it is a rule

- Logical atoms, literals, clauses
- A define program is a finite set of definite clauses
- A definite goal has the form $\leftarrow A_1 \land \ldots \land A_n$
- The programmer has an intended model; the program describes features of the model. The programmer wants to know properties of the intended model
- The evaluation engine must be sound
The Least Herbrand Model

- Given an alphabet A, the Herbrand universe consists of all ground terms that can be constructed using symbols from A
 - when A doesn’t contain any function symbols, the Herbrand universe is simply the set of all constants in A
- The Herbrand base consists of all ground atoms over A
Herbrand Model

- Herbrand interpretation
 - essentially a subset of the Herbrand base, saying which ground atoms are true

- A Herbrand model of a program is a Herbrand interpretation such that every clause is true in it
Why Herbrand Model?

- Theorem: Let P be a definite program and G a definite goal, if \(P \cup \{G\} \) has a model, then \(P \cup \{G\} \) has a Herbrand model.
- Corollary: if \(P \cup \{G\} \) does not have a Herbrand model, then \(P \models \neg G \).
- Thus, one only need to check whether G is false in all Herbrand models of P to determine whether \(\neg G \) is true.
- Theorem: Given two Herbrand model of a definite program, their intersection is also a Herbrand model.
The Least Herbrand Model

- Theorem: There exists a unique least Herbrand model.
- Theorem: The least Herbrand model is the set of all ground atomic logical consequences of the program.
Construction of the Least Herbrand Model

- Using the immediate consequence operator
- The least fixpoint of the immediate consequence operator is the least Herbrand Model.
Next Lecture

- Overview of Trust Management