CS590U
Access Control: Theory and
Practice

Lecture 17 (March 21)
Capability-Based Systems



Overview of UNIX Access

i Control

= Based on user/group id of the process
= Child process inherits parent’s process
= Setuid

= Confining processes
= chroot
=« jail
=« DTE
= system call interception




i Capability vs. ACL

= ACL

= an access control list is associated with each
object

= Capabilities
= a list of capabilities is associated with each subject



The Confused Deputy

N. Hardy
In Operating Systems Review, 1988.



i The Confused Deputy Problem

= The compiler program is SYSX/FORT.
= Other files under SYSX include STAT and BILL.

=« The compiler program needs to write to files in
SYSX directory, so it is given authority to write to
files in SYSX.

= A user who runs SYSX/FORT can provide a file
name to receive output info.

= A malicious user may use SYSX/BILL as the output
name, resulting in billing info being erased.



Analysis of The Confused
i Deputy Problem

= The compiler runs with authority from two
sources
= the invoker

= the system admin (who installed the compiler and
controls billing and other info)

= It is the deputy of two masters

= There is no way to tell which master the
deputy is serving when accessing a piece of
resource




i More Analysis

= Compare with setuid in UNIX and the
associated security problems

= Compare with the Trojan horse problem
= How can this problem be solved?



i The Capability Approach

= The compiler program is given capabilities to
access SYSX/STAT and SYSX/BILL, which are
stored in capability slots 1 & 2

= When the invoker runs the compiler program, it
gives a capability to write to the output file, which
is stored in capability slot 3. The invoker cannot
give a capability for SYSX/BILL if it doesnt have
the capability.

= When writing billing info, the program uses
capability in slot 2. When writing the output, it
uses capability in slot 3.



i Overview of KeyKOS

= A capability-based microkernel operating
system

= A message-based system

= objects call other objects by sending a key-
addressed message



i Basic Concepts in KeyKOS

= Domains
= Similar to processes in UNIX

= A domain has 16 general slots and several special
slots (e.g., address slot)

= A domain is an object and may be identified in a
gate key

= Keys (capabilities)

= A key designates a specific object and certain
authority over the object

10



i Domains Calling Domains

= When one domain calls another domain

= The calling domain identifies a general slot and
invoke the key in it (should be a gate key)

= The calling domain may add other keys to be
passed to the called domain

= The called domain receives a message, which
include the keys chosen by the calling domain,
and in addition, a resume key, implicitly generated
by the system

11



i The KeyKOS Microkernel

= It provides

several types of primitive objects
multiprogramming and scheduling support

single-level store. Domains are unaware of the
distinction between main storage and disk

virtual memories for domains

gate keys by which messages are sent between
domains

an invariant interpretation of keys

12



Implications of the Capability

i System

= The confused deputy problem can be
resolved.

= Other problems may arise, however. For
example,

= Roles of programmers and system admins may be
mingled?

= How does one user share files with another user?

13



Capability Myths Demolished

Mark S. Miller, Ka-Ping Yee, Jonathan
Shapiro



i Three Myths

= Equivalence myth: ACL systems and
capability systems are equivalent

= they are just alternative ways of representing
access matrices

= Confinement myth: Capability systems cannot
enforce confinement

= Irrevocability myth: Capability-based access
cannot be revoked

15



i Four Models

= ACLs as columns (of access matrices)
= Capabilities as rows

= Capabilities as keys

= Object capabilities

16



i On Equivalence

= While both ACLs and capabilities can
represent a static access matrix, state
changes are different in ACL systems and
capability systems.

17



i Designation and Authority

= [See the figures comparing ACLs with
capabilities]

= ACL systems need a namespace for objects

= In capability systems, a capability can serve
both to designate a resource and to provide
authority.

= Property A: No designation without authority
= ACL systems do not have this.
» [Is this a feature or a bug?]

18



i Granularity of Subjects

= ACLs also need a namespace for subjects
= as they need to refer to subjects

= Implications

= the set of subjects cannot be too many or too
dynamic

= most ACL systems treat users as subjects, and do
not support fine-grained subjects

= Property B: Dynamic Subject Creation

19



i Power to Edit Authorities

= In (almost) all ACL systems, the power to edit
authorities is aggregated by resource

= naturally compatible with DAC model

= In capabilities systems, the power to edit
authorities is aggregated by subject

s Property C: Subject-Aggregated Authority
Management

20



ACLs as Columns vs.
i Capabilities as Rows

= ACL-based systems do not have the following
properties
= Property A: No designation without authority
= Property B: Dynamic Subject Creation

= Property C: Subject-Aggregated Authority
Management

21



i On Confinement

= The Confinement Myth”

1. capability systems cannot limit the propagation
of authority

2. capability systems cannot solve the confinement
problem
= Observation

= In object capabilities, for A to give a capability
over C to B, A must have a capability over C and
a capability over B

» [addresses 2, but doesn't fully address 1.]

22



i On Irrevocability

= "The irrevocability myth”

= once a subject holds a capability, no one but the
subject can remove the capability

= delegation is trivial, and revocation is infeasible

= By adding indirection, one can achieve the
effect of revocation

= [See the paper]

23



On the Ability to Enforce *-
i property

= Boebert claims that "an unmodified capability
system cannot enforce the *-property”

= a low-level user can write the “write low
capability” to a place readable by a high-level user

= [he authors claim that

= Capabilities cannot be written to data segments;
thus the above attack doesn't work

= Unresolved issues
»« What about sending messages from low to high?

24



i Capabilities Are Not Bit Strings

= Gong asserted

= "Generally a capability is a bit string and can
propagate in many ways without detection.”

= One category of capability systems, known as
password capability system, are like that.

25



The Capabilities-as-Keys

i Model

= Capabilities are copyable, unforgeable keys
= resources are protected by locks

= ACccessing a resource requires selecting a key

= Ambient authority means that a user’s

authority is automatically exercised, but not
selected.

= causes the confused deputy problem
s Property D: No Ambient Authority

26



Capabilities-as-Keys vs. Object
i Capabilities

s Property E. Composability of Authorities
= [Not sure what this property means]
= access and authorization can be unified

s Property F. Access-Controlled Delegation
Channels

= before A can delegate to B, A must hold a
capability over B

27



Thoughts on OS Access
i Control and Capabilities

= Static/Dynamic
= static: resource sharing between users

= dynamic: access control relationships among
processes

= [t is unclear whether capability-based
systems can handle static resource sharing

28



i Relevant Open Questions

= Are capability-based systems fundamentally
better than ACL-based systems such as
UNIX?

= Can one add an additional layer of access
control to ACL-based systems to improve its
access control?

= If so, how the this layer work?

29



i Next Lecture

= Basics of Logic and Logic Programming

30



