
CS590U
Access Control: Theory and
Practice

Lecture 17 (March 21)
Capability-Based Systems

2

Overview of UNIX Access
Control

n Based on user/group id of the process
n Child process inherits parent’s process
n Setuid
n Confining processes

n chroot
n jail
n DTE
n system call interception

3

Capability vs. ACL

n ACL
n an access control list is associated with each

object

n Capabilities
n a list of capabilities is associated with each subject

The Confused Deputy

N. Hardy
In Operating Systems Review, 1988.

5

The Confused Deputy Problem
n The compiler program is SYSX/FORT.
n Other files under SYSX include STAT and BILL.
n The compiler program needs to write to files in

SYSX directory, so it is given authority to write to
files in SYSX.

n A user who runs SYSX/FORT can provide a file
name to receive output info.

n A malicious user may use SYSX/BILL as the output
name, resulting in billing info being erased.

6

Analysis of The Confused
Deputy Problem

n The compiler runs with authority from two
sources
n the invoker
n the system admin (who installed the compiler and

controls billing and other info)

n It is the deputy of two masters
n There is no way to tell which master the

deputy is serving when accessing a piece of
resource

7

More Analysis

n Compare with setuid in UNIX and the
associated security problems

n Compare with the Trojan horse problem
n How can this problem be solved?

8

The Capability Approach
n The compiler program is given capabilities to

access SYSX/STAT and SYSX/BILL, which are
stored in capability slots 1 & 2

n When the invoker runs the compiler program, it
gives a capability to write to the output file, which
is stored in capability slot 3. The invoker cannot
give a capability for SYSX/BILL if it doesn’t have
the capability.

n When writing billing info, the program uses
capability in slot 2. When writing the output, it
uses capability in slot 3.

9

Overview of KeyKOS

n A capability-based microkernel operating
system

n A message-based system
n objects call other objects by sending a key-

addressed message

10

Basic Concepts in KeyKOS

n Domains
n Similar to processes in UNIX
n A domain has 16 general slots and several special

slots (e.g., address slot)
n A domain is an object and may be identified in a

gate key

n Keys (capabilities)
n A key designates a specific object and certain

authority over the object

11

Domains Calling Domains

n When one domain calls another domain
n The calling domain identifies a general slot and

invoke the key in it (should be a gate key)
n The calling domain may add other keys to be

passed to the called domain
n The called domain receives a message, which

include the keys chosen by the calling domain,
and in addition, a resume key, implicitly generated
by the system

12

The KeyKOS Microkernel

n It provides
n several types of primitive objects
n multiprogramming and scheduling support
n single-level store. Domains are unaware of the

distinction between main storage and disk
n virtual memories for domains
n gate keys by which messages are sent between

domains
n an invariant interpretation of keys
n ……

13

Implications of the Capability
System

n The confused deputy problem can be
resolved.

n Other problems may arise, however. For
example,
n Roles of programmers and system admins may be

mingled?
n How does one user share files with another user?

Capability Myths Demolished

Mark S. Miller, Ka-Ping Yee, Jonathan
Shapiro

15

Three Myths

n Equivalence myth: ACL systems and
capability systems are equivalent
n they are just alternative ways of representing

access matrices

n Confinement myth: Capability systems cannot
enforce confinement

n Irrevocability myth: Capability-based access
cannot be revoked

16

Four Models

n ACLs as columns (of access matrices)
n Capabilities as rows
n Capabilities as keys
n Object capabilities

17

On Equivalence

n While both ACLs and capabilities can
represent a static access matrix, state
changes are different in ACL systems and
capability systems.

18

Designation and Authority

n [See the figures comparing ACLs with
capabilities]

n ACL systems need a namespace for objects
n In capability systems, a capability can serve

both to designate a resource and to provide
authority.

n Property A: No designation without authority
n ACL systems do not have this.
n [Is this a feature or a bug?]

19

Granularity of Subjects

n ACLs also need a namespace for subjects
n as they need to refer to subjects

n Implications
n the set of subjects cannot be too many or too

dynamic
n most ACL systems treat users as subjects, and do

not support fine-grained subjects

n Property B: Dynamic Subject Creation

20

Power to Edit Authorities

n In (almost) all ACL systems, the power to edit
authorities is aggregated by resource
n naturally compatible with DAC model

n In capabilities systems, the power to edit
authorities is aggregated by subject

n Property C: Subject-Aggregated Authority
Management

21

ACLs as Columns vs.
Capabilities as Rows

n ACL-based systems do not have the following
properties
n Property A: No designation without authority
n Property B: Dynamic Subject Creation
n Property C: Subject-Aggregated Authority

Management

22

On Confinement

n “The Confinement Myth”
1. capability systems cannot limit the propagation

of authority
2. capability systems cannot solve the confinement

problem
n Observation

n In object capabilities, for A to give a capability
over C to B, A must have a capability over C and
a capability over B

n [addresses 2, but doesn’t fully address 1.]

23

On Irrevocability

n “The irrevocability myth”
n once a subject holds a capability, no one but the

subject can remove the capability
n delegation is trivial, and revocation is infeasible

n By adding indirection, one can achieve the
effect of revocation
n [See the paper]

24

On the Ability to Enforce *-
property

n Boebert claims that “an unmodified capability
system cannot enforce the *-property”
n a low-level user can write the “write low

capability” to a place readable by a high-level user

n The authors claim that
n capabilities cannot be written to data segments;

thus the above attack doesn’t work

n Unresolved issues
n What about sending messages from low to high?

25

Capabilities Are Not Bit Strings

n Gong asserted
n “Generally a capability is a bit string and can

propagate in many ways without detection.”

n One category of capability systems, known as
password capability system, are like that.

26

The Capabilities-as-Keys
Model

n Capabilities are copyable, unforgeable keys
n resources are protected by locks
n accessing a resource requires selecting a key

n Ambient authority means that a user’s
authority is automatically exercised, but not
selected.
n causes the confused deputy problem

n Property D: No Ambient Authority

27

Capabilities-as-Keys vs. Object
Capabilities

n Property E. Composability of Authorities
n [Not sure what this property means]
n access and authorization can be unified

n Property F. Access-Controlled Delegation
Channels
n before A can delegate to B, A must hold a

capability over B

28

Thoughts on OS Access
Control and Capabilities

n Static/Dynamic
n static: resource sharing between users
n dynamic: access control relationships among

processes

n It is unclear whether capability-based
systems can handle static resource sharing

29

Relevant Open Questions

n Are capability-based systems fundamentally
better than ACL-based systems such as
UNIX?

n Can one add an additional layer of access
control to ACL-based systems to improve its
access control?

n If so, how the this layer work?

30

Next Lecture

n Basics of Logic and Logic Programming

