CS590U Access Control: Theory and Practice

Lecture 14 (March 2) RBAC: Constraint Generation

SSoD Policies

- The SoD principle: the collaboration of multiple users is needed to perform some sensitive tasks
- Static enforcement of SoD: multiple users together have all permissions to perform these tasks
- SSoD policies
 - ssod({p1,p2,p3,p4}, 3) means that 3 users are required to cover all permissions in {p1,p2,p3,p4}, i.e., no 2 users have all permissions in {p1,p2,p3,p4}
- Checking whether an RBAC state is safe wrt. an SSoD policy is coNP-complete.

SMER Constraints

- smer({r₁, ... , r_m}, t)
 - means that no user can be authorized for t or more roles from $\{r_1,\,...\,,\,r_m\}$
- Examples
 - smer({r₁,r₂}, 2) means that r₁ and r₂ are mutually exclusive, i.e., no user can be authorized for both roles
 - smer({r₁,r₂,r₃}, 2) is equivalent to { smer({r₁,r₂}, 2), smer({r₂,r₃}, 2), smer({r₁,r₃}, 2) }
 - smer({r₁,r₂,r₃}, 3) means that no user can be authorized for all three roles

Generation of SMER

- How did SMER constraints get there in the first place (for us to consider EV)?
- Alternate approach: start with set E of SSoD policies, then generate SMER constraints.
- The generation problem
 - Input: PA,RH,E
 - Output: C
 - Goal: C should implement (PA,RH,E) as precisely as possible

First Step: From SSoD to RSSoD

- SSoD policies are about permissions
- SMER constraints are about role memberships
- Need to translate requirements on permissions to those on roles
 - ssod({p₁,...p_n}, k)
 - rssod({r₁,...,r_n}, k)
 - smer({r₁,...,r_m}, t)

- no k-1 users have all permissions
- no k-1 users have all roles
- no single user has t or more roles

Example

• Example:

- E={ ssod({p₁,p₂,p₃,p₄,p₅}, 3) }
- PA={(r₁,p₁), (r₂,p₂), (r₃,p₃), (r₄,p₄), (r₄,p₅)} is equivalent to
- D={ rssod({r₁,r₂,r₃,r₄}, 3) } under every RH

The Generation Problem Restated

- Given a set D of RSSoD requirements and a role hierarchy RH, generate a set C of SMER constraints that implements D under RH
- Compatibility between C and RH
 - SMER constraints may render some roles unusable, e.g., given C={smer({r1,r2},2)} and RH={r3≥r1, r3≥r2}, no user can ever be authorized for r3

Implements

Definition: C implements D under RH iff.

- C is compatible with RH
 - every role in RH can be made nonempty without violating C
- C enforces D under RH
 - for every UA such that (UA,RH) satisfies C, (UA,RH) is safe wrt D

Example

- D={ rssod($\{r_1, r_2, r_3, r_4\}, 3$) }
- RH={ $r_5 \ge r_1$, $r_5 \ge r_2$ }
- Then
 - C1={ smer({r₁,r₂,r₃},2) } enforces D,RH, but is incompatible with RH
 - C2={ smer({r₁,r₃,r₄},2) } implements D,RH
 - C3={ smer({r₁,r₃},2), smer({r₂,r₄},2), smer({r₃,r₄},2) } also implements D,RH

Precise Implementation

- C is necessary to enforce D under RH
 - if for every UA, (UA,RH) is safe wrt D and every role in D has at least one authorized user implies that (UA,RH) satisfies C
- C precisely enforces D under RH, iff
 - C enforces D under RH, and
 - C is necessary to enforce D under RH
- C precisely implements D under RH iff
 - C implements D under RH, and
 - C is necessary to enforce D under RH

Expressive Power Questions

- Do we need SMER constraints other than 2 2? Answer: yes
 - ex1: D = { rssod({ r_1, r_2, r_3 }, 2) }, RH={ $r_4 \ge r_1, r_4 \ge r_2, r_5 \ge r_1, r_5 \ge r_3, r_6 \ge r_2, r_6 \ge r_3$ }, C={smer({ r_1, r_2, r_3 }, 3} implements D, but no set of 2-2 SMER constraints would be compatible with RH
 - do we have such examples showing the need for kk SMER constraints for arbitrary k? Yes.
 - ex2: when RH= Ø, to precisely enforce D = { rssod({r₁,r₂,r₃}, 2) }, one still need 3-3 SMER

Expressive Power Questions

 Can we do without 2-2 SMER (or 2-n SMER)? Answer: No.

Restrictiveness of Constraints

- Goal: "least restrictive" set of constraints that implements D under RH
- C₁ is less restrictive than C₂ under RH if the UA's allowed by C₁ is a strict superset of the UA's allowed by C₂.
- C is minimal if C implements D and no other constraint that implements D is less restrictive.
- If C is precise, then C is minimal.

Precise Implementation is not always Possible

- D={ rssod({r₁,r₂,r₃,r₄}, 3) }
- RH={ $r_5 \ge r_1$, $r_5 \ge r_2$ }
- C₂={ smer({r₁,r₃,r₄},2) } implements D,RH
- C₃={ smer({r₁,r₃},2), smer({r₂,r₄},2), smer({r₃,r₄},2) } also implements D,RH
- Both C₂ and C₃ minimally enforce D under RH

A Generation Algorithm That Works for $RH=\emptyset$

Input: rssod(R, k)

Output: SMER constraints

- 1 Let n = |R|, S = emptyset
- 2 If k = 2 output smer(R, n)

3 Else

- 4 for all j from 2 to floor((n-1)/(k-1)) + 1
- 5 let m = (k-1)(j-1) + 1
- 6 for each size-m subset R' of R
- 7 output smer(R', j)

Output of the Algorithm

- If k = 2, output is smer(R, n)
- If k = n, output is smer(R, 2)
- In other cases, we get multiple outputs. Each is sufficient to enforce the RSSoD
 - each constraint that is generated is minimal.
 - every singleton set of constraints that is minimal is generated.

