
CS590U
Access Control: Theory and
Practice

Lecture 14 (March 2)
RBAC: Constraint Generation

2

SSoD Policies
n The SoD principle: the collaboration of multiple users

is needed to perform some sensitive tasks
n Static enforcement of SoD: multiple users together

have all permissions to perform these tasks
n SSoD policies

n ssod({p1,p2,p3,p4}, 3) means that 3 users are required to
cover all permissions in {p1,p2,p3,p4}, i.e., no 2 users have
all permissions in {p1,p2,p3,p4}

n Checking whether an RBAC state is safe wrt. an SSoD
policy is coNP-complete.

3

SMER Constraints
n smer({r1, … , rm}, t)

n means that no user can be authorized for t or more roles
from {r1, … , rm}

n Examples
n smer({r1,r2}, 2) means that r1 and r2 are mutually exclusive,

i.e., no user can be authorized for both roles
n smer({r1,r2,r3}, 2) is equivalent to

{ smer({r1,r2}, 2), smer({r2,r3}, 2), smer({r1,r3}, 2) }
n smer({r1,r2,r3}, 3) means that no user can be authorized for

all three roles

4

Generation of SMER

n How did SMER constraints get there in the
first place (for us to consider EV)?

n Alternate approach: start with set E of SSoD
policies, then generate SMER constraints.

n The generation problem
n Input: PA,RH,E
n Output: C
n Goal: C should implement 〈PA,RH,E〉 as precisely

as possible

5

First Step: From SSoD to
RSSoD

n SSoD policies are about permissions
n SMER constraints are about role memberships
n Need to translate requirements on

permissions to those on roles
n ssod({p1,…pn}, k) no k-1 users have all permissions
n rssod({r1,…,rn}, k) no k-1 users have all roles
n smer({r1,…,rm}, t) no single user has t or more roles

6

Example

n Example:
n E={ ssod({p1,p2,p3,p4,p5}, 3) }
n PA={(r1,p1), (r2,p2), (r3,p3), (r4,p4), (r4,p5)}
is equivalent to
n D={ rssod({r1,r2,r3,r4}, 3) }
under every RH

7

The Generation Problem
Restated

n Given a set D of RSSoD requirements and a
role hierarchy RH, generate a set C of SMER
constraints that implements D under RH

n Compatibility between C and RH
n SMER constraints may render some roles

unusable, e.g., given C={smer({r1,r2},2)} and
RH={r3≥r1, r3≥r2}, no user can ever be
authorized for r3

8

Implements

n Definition: C implements D under RH iff.
n C is compatible with RH

n every role in RH can be made nonempty without
violating C

n C enforces D under RH
n for every UA such that (UA,RH) satisfies C, (UA,RH)

is safe wrt D

9

Example
n D={ rssod({r1,r2,r3,r4}, 3) }
n RH={ r5≥r1, r5 ≥r2 }

n Then
n C1={ smer({r1,r2,r3},2) } enforces D,RH, but is

incompatible with RH
n C2={ smer({r1,r3,r4},2) } implements D,RH
n C3={ smer({r1,r3},2), smer({r2,r4},2),

smer({r3,r4},2) } also implements D,RH

10

Precise Implementation
n C is necessary to enforce D under RH

n if for every UA, (UA,RH) is safe wrt D and every
role in D has at least one authorized user implies
that (UA,RH) satisfies C

n C precisely enforces D under RH, iff
n C enforces D under RH, and
n C is necessary to enforce D under RH

n C precisely implements D under RH iff
n C implements D under RH, and
n C is necessary to enforce D under RH

11

Expressive Power Questions

n Do we need SMER constraints other than 2-
2? Answer: yes
n ex1: D = { rssod({r1,r2,r3}, 2) }, RH={r4≥r1, r4≥r2,

r5≥r1, r5≥r3, r6≥r2, r6≥r3}, C={smer({r1,r2,r3}, 3}
implements D, but no set of 2-2 SMER constraints
would be compatible with RH
n do we have such examples showing the need for k-

k SMER constraints for arbitrary k? Yes.

n ex2: when RH= ∅, to precisely enforce D = {
rssod({r1,r2,r3}, 2) }, one still need 3-3 SMER

12

Expressive Power Questions

n Can we do without 2-2 SMER (or 2-n SMER)?
Answer: No.

13

Restrictiveness of Constraints

n Goal: “least restrictive” set of constraints that
implements D under RH

n C1 is less restrictive than C2 under RH if the
UA’s allowed by C1 is a strict superset of the
UA’s allowed by C2.

n C is minimal if C implements D and no other
constraint that implements D is less
restrictive.

n If C is precise, then C is minimal.

14

Precise Implementation is not
always Possible

n D={ rssod({r1,r2,r3,r4}, 3) }
n RH={ r5≥r1, r5 ≥r2 }
n C2={ smer({r1,r3,r4},2) } implements D,RH
n C3={ smer({r1,r3},2), smer({r2,r4},2),

smer({r3,r4},2) } also implements D,RH

n Both C2 and C3 minimally enforce D under RH

15

A Generation Algorithm That
Works for RH=∅
Input: rssod(R, k)
Output: SMER constraints
1 Let n = |R|, S = emptyset
2 If k = 2 output smer(R, n)
3 Else
4 for all j from 2 to floor((n-1)/(k-1)) + 1
5 let m = (k-1)(j-1) + 1
6 for each size-m subset R’ of R
7 output smer(R’, j)

16

Output of the Algorithm

n If k = 2, output is smer(R, n)
n If k = n, output is smer(R, 2)
n In other cases, we get multiple outputs. Each

is sufficient to enforce the RSSoD
n each constraint that is generated is minimal.
n every singleton set of constraints that is minimal is

generated.

17

Next Lecture

n UNIX Access Control

