
CS590U
Access Control: Theory and
Practice

Lecture 13 (February 28)
Constraints in Role Based Access

Control

2

SoD
n If a sensitive task comprises two steps, then two

different users should perform each step.

n E.g. the same user cannot order goods, and
authorize payment for those goods.

n Is a security principle that is generally considered to
be useful.

3

SoD (contd.)
n More elaborate example:

(a) Order goods and record details of order
(b) Receive invoice and check against order
(c) Receive goods and check against invoice
(d) Authorize payment against invoice

n A set of SoD requirements:
(1) No user performs (a) and (d).
(2) At least 3 users to perform all 4 steps.

4

Enforcement of SoD

n Static enforcement
n the permissions to perform two steps are not

assigned to a single user

n Dynamic enforcement
n remember which user performed each step, and

don’t allow a user to perform the next step if
violating SoD policy

5

SoD and RBAC

n Static SoD policy: ssod({ p1, …, pn}, k)
n e1 = ssod({order, pay}, 2)
n e2 = ssod({order, invoice, goods, pay}, 3)

Bob Alice

QAEngg Accnt

Order Invoice Goods Pay

WareH Fin

Emp

Carl

6

SSoD Safety
n An RBAC state is given by 〈UA,PA,RH〉
n Definition: An RBAC state γ is safe wrt.

ssod({p1, …, pn},k) iff. in γ no k-1 users together
have all permissions in {p1, …, pn}.

n Definition: An RBAC state γ is safe wrt. a set E of
SSoD policies iff γ is safe wrt. each e in E.

n Definition: The SCSSoD problem is to determine
whether an RBAC state is safe wrt. a set E of SSoD
policies.

7

SCSSOD is coNP-complete
Proof: Show that determining whether γ is not safe wrt.

E is NP-complete.
In NP: if unsafe, then ∃ ssod({p1, …, pn},k) in E, and k-

1 users such that the permissions they have contains
{p1, …, pn}. After guessing e, and k-1 users, can be
verified in polynomial time.

NP-hard: The set covering problem: Given a finite set S,
F={S1,…,Sm} (where Sj ⊆S), B, determine whether
exist B members of F such that their union is S.

Reduction: each element in S maps to a permission,
each Sj maps to a user

8

SMER Constraints
n Statically mutually-exclusive role (SMER) constraints:

smer({r1, … , rm}, t)
n means that no user can be a member of t roles from {r1, … ,

rm}
n smer({r1,r2}, 2} means that r1 and r2 are mutually exclusive,

i.e., no user can be a member of both roles
n Example:

n C = {c1, c2, c3}, where:
n c1 = smer({WHouse, Accnt, Fin}, 2)
n c2 = smer({Engg, Fin}, 2)
n c3 = smer({QA, Fin}, 2)

9

Terminology Confusion in
Literature

n SMER constraints are called SSoD constraints
in the literature
n possible reason: given ssod({p1, p2},2), if only r1

has p1 and only r2 has p2, then making r1 and r2
mutually exclusive enforces ssod({p1, p2},2)

n Why this is bad?
n confusing objective with mechanism
n suppose that one makes r1 and r2 exclusive and

permission assignment changes, then it may not
enforce the SSoD policy anymore

10

Even more Terminology
Confusion

n DMER constraints, which require that certain
roles cannot be activated in the same
session, are called DSoD constraints in the
literature
n because they are dynamic version of “SSoD

constraints”

n However, DMER constraints have nothing to
do with Separation of Duty; they are
motivated by the Least Privilege Principle.

11

SMER Constraints and SSoD
Policies

n How effective is it to use SMER constraints to
enforce SSoD policies?

12

SC-SMER

n Definition: An RBAC state γ satisfies an SMER
constraint smer({r1, … , rm}, t) iff. no user is
a member of at least t roles in {r1, … , rm}

n Firstly: can we check whether an RBAC state
satisfies an SMER constraint efficiently?

n Yes: for each user
n compute set of roles of which she is a member
n intersect with set of roles from constraint
n check if size < t

13

SSoD and SMER

n Enforcement Verification (EV) problem:
whether a set C of SMER constraints enforces
a set E of SSoD policies under a given PA and
RH
n for all possible user-role assignments, does

satisfiesC(s) => safeE(s) ?

14

CEV

n CEV problem: similar to EV, except with
n Singleton set of SSoD policies
n Set of canonical SMER constraints

n EV and CEV are coNP-complete
n Monotone-3-2-SAT reduces to CEV with only 2-2

SMER constraints
n EV is in coNP

15

Monotone 3-2-SAT is NP-
complete

n CNF-SAT is to determine whether a list of
disjunctive clauses can be satisfied at the
same time
n e.g., (p1 ∨¬p2∨¬p3) ∧ (p2 ∨¬p3∨p4) ∧

n In a monotone 3-2-SAT instance, each clause
either consists of 3 positive literals, or 2
negative literals

n Every 3-SAT instance can be transformed to
an equivalent 3-2-SAT instance.

16

A Special Case of CEV is NP-
complete

n Determining whether a set of 2-2 smer
constraints does not enforce a 2-n SSoD
policy is NP-complete

n Given a monotone 3-2-SAT instance,
n for each clause, creates a permission,
n for each role creates a propositional variable,
n each positive clause is translated into permission-

role assignments
n each negative clause is translated into a 2-2 smer

17

The case in favor of SMER

n EV needs to be performed only when role-
role or permission-role relationships change.
These are infrequent.

n When (u,r) is added to UA, only SC-SMER
needs to be checked.

n Complement of CEV reduces to SAT.

18

Generation of SMER
n How did SMER constraints get there in the

first place (for us to consider EV)?
n Alternate approach: start with set E of SSoD

policies, then generate SMER constraints.
Then, EV is inconsequential.

n Naïve approach: make each role mutually
exclusive from every other role. But this is
too restrictive.

19

Next Lecture

n Constraint Generation

