
CS590U
Access Control: Theory and
Practice

Lecture 10 (February 14)
Safety Analysis in HRU

2

Summary of Known Results in
Safety Analysis in HRU
n Undecidable in the general case

n Turing Machine can be reduced to Protection System in HRU

n Undecidable in the monotonic case (no
delete/destroy)
n PCP can be reduced to it

n Undecidable in bi-conditional monotonic case
n PSPACE-complete in the case of no create

n whole thing becomes finite

n coNP-complete in the mono-operational case
n only needs to consider one more new subject

3

Turing Machine

n A Turing Machine is a 7-tuple
(Q, Σ, Γ, δ, q0, qaccept, qreject)

n Q is the set of states
n Σ is the input alphabet
n Γ is the tape alphabet
n δ is the transition function
n q0∈Q is the start state
n qaccept ∈Q is the accept state
n qreject ∈Q is the reject state, qreject ≠ qaccept

4

Basic Results about Turing
Machines

n Universal Turing Machines
n there exists a UTM that take the description of a

TM M and an input string α and outputs M(α)

n It is undecidable to determine whether an
arbitrary Turing machine halts or not
n there exists no algorithm that can take as inputs

the description of a Turing machine and an input
and decides whether the Turing machine halts

5

Simulating Turing Machines
using Protection Systems

n Given a Turing machine, we construct a
protection system
n The set of generic rights include

n the states of the Turing machine
n the tape symbols of the Turing machine
n and two special rights: `own’, `end’

n Turing Machine instructions are mapped to
commands of the protection system

6

Mapping a Tape to an Access
Matrix

n The j’th cell on the tape = the subject sj

n The j’th cell has symbol X ⇒ X ∈ (sj , sj)
n The head is at the j’th cell and the current

state is q ⇒ q ∈(sj , sj)
n The k’th cell is the last ⇒

‘end’ ∈ (sk , sk)
n For 1=j<k, `own’ ∈ (sj , sj+1)

7

Moving Left:
(q, X) -> (p, Y, left)

command CqX(s, s’)
if q in (s’, s’) and X in (s’, s’)

and `own’ in (s, s’)
then delete q from (s’, s’)

delete X from (s’, s’)
enter Y into (s’, s’)
enter p into (s, s)

end

8

Moving Right (case one):
(q, X) -> (p, Y, right)

command CqX(s, s’)
if q in (s, s) and X in (s, s)

and `own’ in (s, s’)
then delete q from (s, s)

delete X from (s, s)
enter Y into (s, s)
enter p into (s’, s’)

end

9

Moving Right (case two):
(q, X) -> (p, Y, right)

command CqX(s, s’)
if q in (s, s) and X in (s, s)

and `end’ in (s, s)
then delete q from (s, s) delete X from (s, s)

enter Y into (s, s)
create subject s’ enter `own’ into (s, s’)
enter p into (s’, s’) enter B into (s’, s’)
delete end from (s, s) enter ‘end’ into (s’, s’)

end

10

Summary

n Given a Turing Machine, it can be encoded as
a protection system, so that the Turing
Machine enters the accept state iff the HRU
protection system leaks the right
corresponding to qaccept

n Safety in HRU is thus undecidable.

11

What about the monotonic
case?

n Use a reduction from the Post
Correspondence Problem (PCP)

12

Six Notions of Safety

n leak safety (whether a right can be leaked by
a command, used in the HRU paper)
n (r)-leak-safety, (o,r)-leak-safety, and (s,o,r)-leak-

safety

n simple safety (whether a right that does not
exist in the initial state can be added, used in
most follow-up work)
n (r)-simple-safety, (o,r)-simple-safety, and (s,o,r)-

simple-safety

13

Mono-operational HRU
Systems

n Definition: each command has only one
primitive operation in its body

n Key implications:
n when an subject/object is created, no right can be

added at the same time
n a new subject/object is no different from any

other new subject/object

n Theorem: Safety analysis is decidable in
mono-operational HRU systems

14

Proof of Decidability

n General approach to prove decidability:
n show that one only needs to consider a bounded

number of possibilities

n Safety in mono-operational HRU
n show that one only needs to add at most one

subject

15

Argument Taken from the
HRU paper
n The proof hinges on two simple observations. First,

commands can test for the presence of rights, but
not the absence of rights or objects. This allows
delete and destroy commands to be removed from
computations leading to a leak (since the system is
mono-operational, we can identify the command by
the type of primitive operation). Second, a command
can only identify objects by the rights in their row
and column of the access matrix. No mono-
operational command can both create an object and
enter rights, so multiple creates can be removed
from computations, leaving the creation of only one
subject. This allows the length of the shortest `leaky'
computation to be bounded.

16

Examining the argument

n The above argument is flawed, why?

17

“Reduction” of (o,r)-safety to
(r)-safety in [HRU]

n Given an instance of (o,r)-safety
n Add two new generic rights r’ and r’’,
n Add r’ to (o,o)
n Add the following command
Command DUMMY(x,y)
if r in (x,y) and r’ in (y,y)
then enter r’’ into (y,y)
end
n We get an instance of (r)-safety

18

Is this a reduction?

n What if a right is leaked in transit for (o,r)-
safety?
n this is not a reduction for the definition of safety

(leak safety) in the paper
n What if the object o is removed and then

added back in order to leak the right (o,r)?
n in Unix, a none-owner having write permission can

destroy the file and recreate it
n Even if a reduction exists, this does not mean

that (o,r) safety is undecidable.

19

Open Problems in Safety
Analysis in HRU

n What is the computational complexity with
limited number of rights and limited number
of commands?
n what if there is only one generic right and one

command?
n seems still coNP-hard, but should be decidable

n what if there is only one generic right?
n what if there are only two generic rights?
n what is there is only one command?

20

Issues in the Definition of
Safety Problem

n Trusted subjects
n Whether to use leak-safety or simple-safety?

n whether transient states should

n Beyond safety

21

Removing trusted subjects is a
problem

n Why: also remove possible attacks
n Source of the problem: no concept of initiator

of a command. Without it, cannot define
concurrence or truly untrusted.

22

Whether Transient Right
Should be Considered?

n Depends on whether a command is atomic
and which states are considered to be
reachable.

n Depends on intention of modeling
n In most usage, e.g., modeling of Graham-

Denning, commands are atomic.
n Atomic commands must exist
n How about breaking up commands that are not

atomic?

23

Beyond Safety

n The notion of safety is problematic
n some subjects are entitled access, the list of these

subjects may not be pre-determined

n Other notions of security are also needed
n Availability: a subject always has access
n An object always has an owner
n Every subject that can read an object o has the

control right over another subject s’
n State-transition-based security properties

24

End of Lecture 10

n Next lecture
n Understanding safety analysis and other work on

safety analysis

