
CS590U
Access Control: Theory and
Practice

Lecture 9 (February 7)
Formalizing Access Matrices: Graham-
Denning and Harrison-Ruzzo-Ullman

2

History of Access Matrices

n Lampson’1971
n “Protection”

n Refined by Graham and Denning’1972
n “Protection---Principles and Practice”

n Harrison, Ruzzo, and Ullman’1976
n “Protection in Operating Systems”

3

Access Matrix

n A set of subjects S
n A set of objects O
n A set of rights R
n An access control matrix

n one row for each subject
n one column for each subject/object
n elements are right of subject on another subject

or object

4

The Graham-Denning Work

n Based on access matrices
n Focuses on access control within an operating

system
n Explores various possibilities of discretionary

access control

5

Seven Levels of Protection /
Separation
1. No sharing at all
2. Sharing copies of programs or data files
3. Sharing originals of programs or data files
4. Sharing programming systems or subsystems
5. Permitting the cooperation of mutually suspicious

subsystems, e.g., debugging or proprietary
subsystems

6. Providing memory-less subsystems
7. Providing “certified” subsystems

6

Elements in Graham-Denning
n Objects: have unique identifier
n Subjects

n a subject is a pair (process, domain)
n forging a subject identifier is impossible (authentication)

n Protection state
n modeled using an access matrix (can also be represented as

a graph)

n No modeling of actual accesses (only access
permissions)
n whether this is sufficient depends on the properties to be

studied

7

Special Rights in Graham-
Denning Model
n Each subject/object has an owner
n Each subject has a controller (which may be itself)
n A right may be transferable or nontransferable

8

Eight Commands in Graham-
Denning Model

1. subject x creates object o
n no precondition
n add column for o
n place `owner’ in A[x,o]

2. subject x creates subject s
n no precondition
n add row and column for s
n place `control’, `owner’ in A[x,s]

9

Eight Commands in Graham-
Denning Model

3. subject x destroys object o
n precondition: `owner’ in A[x,o]
n delete column o

4. subject x destroys subject s
n precondition: `owner’ in A[x,s]
n delete row and column for s

10

Eight Commands in Graham-
Denning Model

5. subject x grants a right r/r* on object o to
subject s
n precondition: `owner’ in A[x,o]
n stores r/r* in A[s,o]

6. subject x transfers a right r/r* on object o
to subject s
n precondition: r* in A[x,o]
n stores r/r* in A[s,o]

11

Eight Commands in Graham-
Denning Model

7. subject x deletes right r/r* on object o from
subject s
n precondition: `control’ in A[x,s] or `owner’ in

A[x,o]
n delete r/r* from A[s,o]

12

Eight Commands in Graham-
Denning Model

8. subject x checks what rights subject s has
on object o [w := read s,o]
n precondition: `control’ in A[x,s] OR `owner’ in

A[x,o]
n copy A[s,o] to w

n This does not affect the protection state.
n policy review functions
n useful when analyzing external behaviors of the

protection system, not clear why needed in this
paper

13

Messy Details

n Some requirements place additional
constraints on state-transitions
n Each subject is owner or controlled by at most one

other subject
n cannot transfer/grant owner right

n It is undesirable for a subject to be `owner’ of
itself, for then it can delete other subjects’ access
to itself

n [The relation “owner” defines naturally a tree
hierarchy on subjects.]
n What does it take to maintain the hierarchy?

14

Other possible extensions

n Transfer-only copy flags
n Limited-use access attributes

n needs to model access to use this feature
n Allow a subject to obtain a right that its

subordinate has.
n The notion of “indirect” right

n S2 has indirect right over S means that S2 can
access anything that S is allowed to access, but S2
cann’t take right from S

n differs from basic notion of an access matrix

M.A. Harrison, W.L. Ruzzo, and
J.D. Ullman: Protection in
Operating Systems.

Communications of the ACM, August
1976.

16

Objectives of the HRU Work

n Provide a model that is sufficiently powerful
to encode several access control approaches,
and precise enough so that security
properties can be analyzed

n Introduce the “safety problem”
n Show that the safety problem

n is decidable in certain cases
n is undecidable in general
n is undecidable in monotonic case

17

Protection Systems

n A protection system has
n a finite set R of generic rights
n a finite set C of commands

n A protection system is a state-transition
system

n To model a system, specify the following
constants:
n set of all possible subjects
n set of all possible objects
n R

18

The State of A Protection
System

n A set O of objects
n A set S of subjects that is a subset of O
n An access control matrix

n one row for each subject
n one column for each object
n each cell contains a set of rights

19

Commands: Examples
command GRANT_read(x1,x2,y)

if `own’ in [x1,y]
then enter `read’ into [x2,y]

end

command CREATE_object(x,y)
create object y
enter `own’ into [x,y]

end

20

Syntax of a Command

n A command has the form
command a(X1, X2, …, Xk)

if
r1 in (Xs1, Xo1) and … and rm in (Xsm, Xom)

then
op1 … opn

end

n X1,…,Xk are formal parameters

21

Six Primitive Operations

n enter r into (Xs, Xo)
n Condition: Xs ∈ S and Xo ∈ O
n r may already exist in (Xs, Xo)

n delete r from (Xs, Xo)
n Condition: Xs ∈ S and Xo ∈ O
n r does not need to exist in (Xs, Xo)

22

Six Primitive Operations

n create subject Xs
n Condition: Xs ∉ O

n create object Xo
n Condition: Xo ∉ O

n delete subject Xs
n Condition: Xs ∈ S

n delete object Xo
n Condition: Xo ∈ O and Xo ∉ S

23

How Does State Transition
Work?

n Given a protection system (R, C), state z1
can reach state z2 iff there is an instance of a
command in C so that all conditions are true
at state z1 and executing the primitive
operations one by one results in state z2
n a command is executed as a whole (similar to a

transaction), if one step fails, then nothing
changes

24

Example

n Given the following command
n command α (x, y, z)

enter r1 into (x,x)
destroy subject x
enter r2 into (y,z)

end

n One can never use α(s,s,o) to change a state

25

The Safety Problem

n What do we mean by “safe”?
n Definition 1: “access to resources without

the concurrence of the owner is
impossible”

n Definition 2: “the user should be able to
tell whether what he is about to do (give
away a right, presumably) can lead to the
further leakage of that right to truly
unauthorized subjects”

26

Defining the Safety Problem

n “Suppose a subject s plans to give subjects s’
generic right r to object o. The natural
question is whether the current access
matrix, with r entered into (s’,o), is such that
generic right r could subsequently be entered
somewhere new.”

27

Defining the Safety Problem

n To avoid a trivial “unsafe” answer because s
himself can confer generic right r, we should
in most circumstances delete s itself from the
matrix. It might also make sense to delete
from the matrix any other “reliable” subjects
who could grant r, but whom s “trusts” will
not do so.

28

Defining the Safety Problem

n It is only by using the hypothetical safety test
in this manner, with “reliable” subjects
deleted, that the ability to test whether a
right can be leaked has a useful meaning in
terms of whether it is safe to grant a right to
a subject.

29

Definition of the Safety
Problem in [HRU]

n Given a protection system and generic right r,
we say that the initial configuration Q0 is
unsafe for r (or leaks r) if there is a
configuration Q and a command α such that
n Q is reachable from Q0

n α leaks r from Q

n We say Q0 is safe for r if Q0 is not unsafe for
r.

30

Definition of Right Leakage in
[HRU]

n We say that a command α(x1,…,xk) leaks
generic right r from Q if α, when run on Q,
can execute a primitive operation which
enters r into a cell of the access matrix which
did not previously contain r.

31

End of Lecture 9

n Next lecture (Thursday Feb 9)
n cancelled for David Patterson’s distinguished

lecture

n The one after next (Tuesday Feb 14)
n Safety in HRU
n Read the HRU paper before the lecture

