CS590U
Access Control: Theory and
Practice

Lecture 9 (February 7)

Formalizing Access Matrices: Graham-
Denning and Harrison-Ruzzo-Ullman



i History of Access Matrices

= Lampson’1971
= Protection”

= Refined by Graham and Denning'1972
= Protection---Principles and Practice”

= Harrison, Ruzzo, and Ullman'1976
= Protection in Operating Systems”




i Access Matrix

= A set of subjects S
= A set of objects O
= A set of rights R

= An access control matrix
= one row for each subject
= one column for each subject/object

= elements are right of subject on another subject
or object



i The Graham-Denning Work

= Based on access matrices
= Focuses on access control within an operating
system

= Explores various possibilities of discretionary
access control



Seven Levels of Protection /
i Separation

1. No sharing at all

2. Sharing copies of programs or data files

3. Sharing originals of programs or data files

4. Sharing programming systems or subsystems

. Permitting the cooperation of mutually suspicious
subsystems, e.g., debugging or proprietary
subsystems

6. Providing memory-less subsystems
7. Providing “certified” subsystems




i Elements in Graham-Denning

= Objects: have unique identifier

= Subjects
= a subject is a pair (process, domain)
» forging a subject identifier is impossible (authentication)
= Protection state
= modeled using an access matrix (can also be represented as
a graph)
= No modeling of actual accesses (only access
permissions)

= Whether this is sufficient depends on the properties to be
studied



Special Rights in Graham-
i Denning Model

= Each subject/object has an owner
= Each subject has a controller (which may be itself)
= A right may be transferable or nontransferable

Objecta

Subjects S,

5, contral owner read

Ez control read*® execuie

5 3 control oW 02T




Eight Commands in Graham-
i Denning Model

1. subject x creates object o
= NOo precondition
= add column for o
= place owner’'in A[x,0]

2. subject x creates subject s
= NO precondition
= add row and column for s
= place control’, "owner’ in A[X,S]



Eight Commands in Graham-
i Denning Model

3. subject x destroys object o
= precondition: ~owner’ in A[X,0]
= delete column o

4. subject x destroys subject s
= precondition: “owner’ in A[x,s]
= delete row and column for s



Eight Commands in Graham-
i Denning Model

5. Subject x grants a right r/r* on object o to
subject s
= precondition: ~owner’ in A[X,0]
=« stores r/r* in A[s,0]

6. Subject x transfers a right r/r* on object o
to subject s

= precondition: r* in A[x,0]
= stores r/r* in A[s,0]

10



Eight Commands in Graham-
i Denning Model

7. subject x deletes right r/r* on object o from
subject s

= precondition: "control’ in A[Xx,s] or "owner’ in
A[Xx,0]

=« delete r/r* from A[s,0]

11



Eight Commands in Graham-
i Denning Model

8. Subject x checks what rights subject s has
on object o [w :=read s,0]

= precondition: "control’ in A[x,s] OR "owner’ in
A[Xx,0]

= copy A[s,0]tow
= This does not affect the protection state.
= policy review functions

= useful when analyzing external behaviors of the
protection system, not clear why needed in this

paper

12



i Messy Details

= Some requirements place additional
constraints on state-transitions
= Each subject is owner or controlled by at most one
other subject
= cannot transfer/grant owner right

= It is undesirable for a subject to be "owner of
itself, for then it can delete other subjects’ access
to itself

= [The relation “owner” defines naturally a tree
hierarchy on subjects.]

= What does it take to maintain the hierarchy?

13



i Other possible extensions

= Transfer-only copy flags

= Limited-use access attributes
= heeds to model access to use this feature
= Allow a subject to obtain a right that its
subordinate has.

= The notion of “indirect” right

= S, has indirect right over S means that S, can
access anything that S is allowed to access, but S,
cann'’t take right from S

= differs from basic notion of an access matrix

14



M.A. Harrison, W.L. Ruzzo, and
J.D. Ullman: Protection in
Operating Systems.

Communications of the ACM, August
1976.



i Objectives of the HRU Work

= Provide a model that is sufficiently powerful
to encode several access control approaches,
and precise enough so that security
properties can be analyzed

= Introduce the “safety problem”

= Show that the safety problem
= iS decidable in certain cases

= iS undecidable in general
= IS undecidable in monotonic case

16



i Protection Systems

= A protection system has
= a finite set R of generic rights
= a finite set C of commands

= A protection system is a state-transition
system

= To model a system, specify the following
constants:
= set of all possible subjects

= set of all possible objects
= R

17



The State of A Protection

i System

= A set O of objects
= A set S of subjects that is a subset of O
= An access control matrix

= one row for each subject

= one column for each object
= each cell contains a set of rights

18



i Commands: Examples

command GRANT _read(x1,x2,y)
if “own’in [x1,y]
then enter "read’ into [x2,y]
end

command CREATE_object(x,y)
create object y
enter own’ into [X,Yy]

end

19



i Syntax of a Command

= A command has the form
command a(Xy, Xy, ..., X,)

if

ry in (Xg1, Xo1) and ... and r, in (X, Xom)
then

op; ... Op;,
end

s Xy,...,X are formal parameters

20



i Six Primitive Operations

= enterr into (X, X,)
= Condition: X, Sand X,T O
= I may already exist in (X,, X,)

= deleter from (X, X,)
= Condition: X,T Sand X,1T O
= I does not need to exist in (X,, X,)

21



i Six Primitive Operations

= create subject X
= Condition: X, 1 O
= Create object X,
= Condition: X, I O
= delete subject X
= Condition: X, T S

= delete object X,
= Condition: X,T Oand X, S

22



How Does State Transition

i Work?

= Given a protection system (R, C), state z,
can reach state z, iff there is an instance of a
command in C so that all conditions are true
at state z, and executing the primitive
operations one by one results in state z,

= @ command is executed as a whole (similar to a
transaction), if one step fails, then nothing
changes

23



i Example

= Given the following command
= command a (X, Y, 2)

enter rl into (x,X)

destroy subject x

enter r2 into (y,z)
end

= One can never use a(s,s,0) to change a state

24



i The Safety Problem

= What do we mean by “safe™?

» Definition 1: “access to resources without
the concurrence of the owner is
impossible”

= Definition 2: “the user should be able to
tell whether what he is about to do (give
away a right, presumably) can lead to the
further leakage of that right to truly
unauthorized subjects”

25



i Defining the Safety Problem

= "Suppose a subject s plans to give subjects s’
generic right r to object o. The natural
question is whether the current access
matrix, with r entered into (s',0), is such that
generic right r could subsequently be entered
somewhere new.”

26



i Defining the Safety Problem

= To avoid a trivial “unsafe” answer because s
himself can confer generic right r, we should
in most circumstances delete s itself from the
matrix. It might also make sense to delete
from the matrix any other “reliable” subjects
who could grant r, but whom s “trusts” will
not do so.

27



i Defining the Safety Problem

= It is only by using the hypothetical safety test
in this manner, with “reliable” subjects
deleted, that the ability to test whether a
right can be leaked has a useful meaning in
terms of whether it is safe to grant a right to
a subject.

28



Definition of the Safety
i Problem in [HRU]

= Given a protection system and generic right r,
we say that the initial configuration Q, is
unsafe for r (or leaks r) if there is a
configuration Q and a command a such that

= Q is reachable from Q,
= a leaks r from Q

= We say Q, is safe for r if Q, is not unsafe for
r.

29



Definition of Right Leakage in

i [HRU]

= We say that a command a(x1,...,xk) leaks
generic right r from Q if a, when run on Q,
can execute a primitive operation which
enters r into a cell of the access matrix which
did not previously contain r.

30



i End of Lecture 9

= Next lecture (Thursday Feb 9)

= cancelled for David Patterson’s distinguished
lecture

= The one after next (Tuesday Feb 14)
« Safety in HRU
=« Read the HRU paper before the lecture

31



