CS590U
Access Control: Theory and Practice

Lecture 7 (January 31)
Integrity: Biba
Integrity Considerations for Secure Computer Systems

MITRE Report
Biba
Motivation

- Bell-LaPadula and other information-flow based security definitions address confidentiality, what about integrity
- What does integrity mean?
 - system integrity: system behave as expected
 - data integrity: data not changed in “incorrect” ways
- One difference between confidentiality & integrity
 - a subject cannot leak a piece of confidential information without reading it, but can introduce low-integrity information without reading any
 - some trust has to be placed on subjects for integrity
The Reference Monitor Concept

- A reference monitor must satisfy three properties
 - complete: all accesses are monitored and enforced
 - protected: its function may not be maliciously or accidentally modified by unauthorized forces
 - provably proper behavior: it must faithfully enforce the specified protection policy
Access Modes

- Observation: viewing of information
 - testing of information that results in a choice of distinct states of the observing subject
- Modification:
- Invocation: a service request from one subject to another
 - the subject being requested is modified.
Integrity Defined

- A subsystem possesses the property of integrity if it can be trusted to adhere to a well-defined code of behavior.

- How to guarantee integrity?
 - the subsystem needs to be initially determined (by some external agency) to perform properly.
 - e.g., using program verification technique
 - ensure that subsystem cannot be corrupted to perform in a manner contrary to the original determination.
The Integrity Problem

- The formulation of access control policies and mechanisms that provide a subsystem with the isolation necessary for protection from subversion
 - protection from intentionally malicious attack: unprivileged, intentionally malicious modification
Integrity Threats

- Two dimensions
 - subsystem external vs. subsystem internal
 - direct vs. indirect

- Four combinations:
 - external direct
 - external indirect
 - internal direct
 - internal indirect
Biba’s Integrity Policies

- Mandatory integrity policy
 - a protection policy, once defined for an object, is unchangeable and must be satisfied for all states of the system (as long as the object exists)

- Discretionary integrity policy
 - a protection policy may be dynamically defined by the user
Integrity Levels

- Each subject (program) has an integrity level
 - reflects confidence on the program executing correctly (what does `correctly’ mean?)

- Each object has an integrity level
 - reflects degree of confidence in the data
 - quality of info in an object vs. importance of an object

- Integrity levels are totally ordered

- Integrity levels different from security levels
 - a highly sensitive data may have low integrity (e.g., information collected by spy)
Five Mandatory Policies

- Strict integrity policy
- Subject low-water mark policy
- Object low-water mark policy
- Low-water mark Integrity Audit Policy
- Ring policy
Strict Integrity Policy

Three rules:

1. s can read o iff \(i(s) = i(o) \)
 - stops indirect sabotage by contaminated data
2. s can write to o iff \(i(o) = i(s) \)
 - stops directly malicious modification
3. \(s_1 \) can execute \(s_2 \) iff \(i(s_2) = i(s_1) \)
 - stops improper activation of more privileged subjects to cause damage to "higher" integrity level objects

Ensures no information path from low-integrity object to high-integrity object

why is this desirable?
Subject Integrity Levels

- What does it mean that a subject is trusted to execute correctly at integrity level i_1?
- Three possibilities:
 1. generate information at level i_1 from any data
 2. generate information at level i_1 when reading data of integrity level i_1 or higher
 3. generate information at any level $i = i_1$ when reading data of integrity level i or higher
Object Integrity Levels

- An object integrity level may be based on
 - Quality of information (levels may change)
 - Importance of the object (levels do not change)
- Intuitively, quality integrity level should be at least as high as importance integrity level
- Quality integrity level may be higher than importance integrity level
Subject Low-Water Policy

- Subject’s integrity level decreases as reading lower integrity data
- The reading rule is relaxed; rules 2 & 3 still apply
- Rule 1 is changed: when s reads o, the integrity level of s is set to \(\min[i(s), i(o)] \).
 - if the integrity levels are not totally ordered, then \(\text{glb}[i(s), i(o)] \)
- Ensures that there is no information path from low integrity data to high integrity data
Object Low-Water Mark Policy

- The writing rule is relaxed: when s writes o, the integrity level of o is set to min[i(s), i(o)].
 - implies that object integrity level represents
 quality rather than importance
- Also ensures that there is no information path from a low integrity object to a high integrity object
Low-Water Mark Integrity Audit Policy

- The integrity levels of subjects and objects both change to reflect the contamination
 - After s observes o, the integrity level of s is lowered to min(i(s), i(o))
 - After s modifies o, the integrity level of o is lowered to min(i(s), i(o))
The Ring Policy

- Integrity levels of subjects and objects are fixed.
- Rules
 - Any subject can read any object
 - s can write to o iff $i(o) = i(s)$
 - s_1 can execute s_2 iff $i(s_2) = i(s_1)$
- Intuitions:
 - subjects are trusted to process inputs correctly, and to generate outputs of a certain integrity level
Summary of Biba’s Models

Different models assume different kinds of trust in subjects

- the ring model assumes subjects can correctly process inputs and generate data of a certain integrity level
- the low-water mark models assume subjects do not introduce low integrity information themselves, but may be contaminated by the source
- the strict integrity model assumes subjects may be contaminated by the source and can only generate data of a certain integrity level
Key Difference between Confidentiality and Integrity

- For confidentiality, no trust needs to be placed on subjects
 - one does need trusted subjects to make system realistic, but they are not needed for confidentiality
- For integrity, one has to trust subjects
 - therefore; one has to justify such trust
End of Lecture 7

- Next lecture
 - The Clark-Wilson Model and the Chinese Wall Model