CS590U
Access Control: Theory and Practice

Lecture 1 (Jan 10)
Introduction to the Course
Instructor Info

- Ninghui Li
 - Email: ninghui@cs.purdue.edu
 - Office phone: 765-496-6756
 - Office: REC 217C

- Office hour
 - Tuesday 4:20pm to 4:50pm
 - Thursday 4:20pm to 4:50pm
 - By appointment
Coursework

- Readings
 - before each lecture
- Assignments (30%)
 - problems
 - review of assigned papers
- Mid-term exam (30%)
- A project (40%)
Check the course homepage
Why a Course on Access Control?
What is Access Control?

- Quote from Security Engineering by Ross Anderson
 - Its function is to control which principals (persons, processes, machines, ...) have access to which resources in the system --- which files they can read, which programs they can execute, and how they share data with other principals, and so on.
Access Control is Pervasive

- Application
 - business applications
- Middleware
 - DBMS
- Operating System
 - controlling access to files, ports
- Hardware
 - memory protection, privilege levels
Access Control is Important

- Quote from Security Engineering
 - Access control is the traditional center of gravity of computer security. It is where security engineering meets computer science.

- TCSEC evaluates security of computer systems based on access control features + assurance
Access Control is Interesting

- Has (relatively) well-developed theories
 - 30+ years history
 - Some (quite involved) theory (apparently) not useful for other fields
- Many interesting and deep results
- Many misconceptions and debates
- A large percentage of published works contain serious errors
 - Corollary: Be skeptical, don’t believe too much what others have said, try form your own opinions
Principles of Access Control (Saltzer and Schroeder 75)

1. Economy of mechanism
 - keep the design as simple and small as possible
2. Fail-safe defaults
 - default is no-access
Principles of Access Control

3. Complete mediation
 ■ every access must be checked

4. Open design
 ■ security does not depend on the secrecy of mechanism
Principles of Access Control

5. Separation of privilege
 - a system that requires two keys is more robust than one that requires one

6. Least privilege
 - every program and every user should operate using the least privilege necessary to complete the job
7. Least common mechanism
 - “minimize the amount of mechanism common to more than one user and depended on by all users”

8. Psychological acceptability
 - “human interface should be designed for ease of use”
 - the user’s mental image of his protection goals should match the mechanism
An Incomplete History of Access Control Research
Earlier Years: Time-Sharing Operating Systems

- Reference monitors (1972)
- Access matrix (1971)
- Discretionary access control
 - trojan horse can leak information
Confidentiality

- Bell-LaPadula Model
- Noninterference (1982)
- Nondeducibility (1986)
- Covert channel
- Proving information flow properties of systems and programs
Integrity

- Biba model
- Clark-Wilson
- Chinese Wall
Database Access Control

- System R approach: grant/revoke, view
- Ingres approach (query rewriting)
- Multilevel databases
- Object/relational databases
- Real systems
 - SQL grant/revoke, view, stored procedures, fine-grained access control
- Privacy centric
Role-Based Access Control

- First in database context
- Then a generic access control approach
- Constraints
- Administration
- Extensions
Access Control in Distributed Systems

- ABLP Logic
- Trust management
 - PolicyMaker, KeyNote, QCM/SD3, Delegation Logic, Binder, RT
- Automated trust negotiation
Other Topics

- Workflow systems
- Firewall
- Cryptographic approach
End of Lecture 1

Next lecture:
- Access matrix
- Partial order and lattices
- State transition systems