A Theory for Comparing the
Expressive Power of Access
Control Models

Mahesh Tripunitara Ninghui Li

Computer Science and CERIAS
Purdue University

Contents

1. Access control
m Protection State, Queries, State-change rules
m SDCO and ARBAC97 schemes

2. Comparing Schemes
s Our approach

3. More Usable Definitions
m Proof strategy, results

4. Application: limited expressive power of HRU
5. Conclusion

Contents

1. Access control
m Protection State, Queries, State-change rules
m SDCO and ARBAC97 schemes

2. Comparing Schemes
s Our approach

3. More Usable Definitions
m Proof strategy, results

4. Application: limited expressive power of HRU
5. Conclusion

Access Control

(s, |
=

Alice :
(Principal) (Object)

Access Control (contd.)

<|Info, read>
= J&D N | N
- L
<Info write> N

g o

Reference
Monitor

Access Control (contd.)

‘.
.
..
[N

<|Info, read>
= J&D N | N
-
=S <Info write> N
\<J’
e More
| Alice | Info |Info
Alice read own
trol own,
Bob __[eontrol | g

.,
‘.
.

Protection State

s In our example, s Is characterized by:
<PS’ OS’ RS’ MS[]>
m Specifies access control model

s Can query the state:
agy="sT P’
=g, =*wi O
ng; =1 M[s,w]"

s Entaillment — whether query is true:
ns?q,iffsT P,2wl O, ?2r1 Ms,w]

State can change

Alice Info
Alice read
________ |
own,

Bob control Write :
|
|
|

Y

Alice Info

. own,
A||Ce read

Bob control write

State Change Rules

createObject(i,o) destroyObject(i,0)
create object o if own 1 M[i,0]
enter own into M[i,0] destroy object o
transferOwn(i,p,0) grant_r(i,p,0)
if own 1T M[i,o] if own T M[i,o]
enter own into M[p,0] enter r into M[p,0]

remove own from M[i,0]

Systems and Schemes

m Access control system: <s, ¢, Q, ?>
m Access control scheme: <S, C, Q, ?>
mSi S
mCi C

m The above scheme is Strict DAC with
Change of Ownership (SDCO)

m sub-scheme of the Graham-Denning scheme

Another Scheme — ARBAC97

m S = <UA, PA, RH, AR>

m C:. assignUser revokeUser
assignPermission revokePermission
addToRoleRange removeFromRoleRange
assignAsSenior removeAsSenior

m Q: (1) <ur>1 UA;
(2) $us.t. <u,r>1 UA;
(3) $rs.t. <u,r>1 UA;
(4-6) for permissions;
(7) <r,, r,>1 RH;
(8) $r,r, s.t. <r,r,>1 RH ? <u,r, > UA ? <p,r,>] PA

Other Examples of Schemes

s The HRU scheme (based on the access
matrix model).

m Various DAC schemes (based on the
access matrix model).

m MAC schemes.

m Other RBAC schemes.
m The RT[?, n] trust management scheme.

Contents

1. Access control
m Protection State, Queries, State-change rules
m SDCO and ARBAC97 schemes

2. Comparing Schemes
s Our approach

3. More Usable Definitions
m Proof strategy, results

4. Application: limited expressive power of HRU
5. Conclusion

Comparison

s How does SDCO compare to ARBAC97?

x Why Is this an important question?

m can scheme B “represent” every security
policy that scheme A can?

m On what basis do we compare?
m Or, how do we formalize “represent policies”?

m Note: straightforward extension from
schemes to models

Examples of Policy Questions

Can (presumably untrusted) Alice get read
access to file, f ?

Does (administrator) Bob always have access to
a configuration file?

Does someone always have access to the
building ?
Is every object owned by exactly one principal?

Can anyone other than Dorothy get access to
the resource r ?

Our Theory: Introduction

m Does there exist a mapping from scheme
A to B with relevant properties?
m Or, can B “simulate” A?
s Mapping should be security preserving.

m Efficiency Is not necessarily relevant.

m But If the mapping is efficient, there is a useful
Implication.

Security-Preserving Mapping

m For B to be at least as expressive as A:

m Identify security properties in A and B (e.d.,
safety, avallability, mutual exclusion,
liveness).

m Does there exist a mapping, m from A to B,
and p, to pg such that: a I A has p, iff m(a)
=b 1 B has p;.

Questions...

s How do we represent properties of
Interest?

s Answer: gueries

s How do we determine whether a system
satisfies a property?
m Answer: security analysis

Security Analysis

Access Control Scheme: <S, C, Q, ?>

Given a system a = <s,, ¢, Q, ?>, we ask:
m $ reachable s,, such that s, ? g7
m " reachable s, does s, ? q?

Can check several interesting properties.

Other kinds of questions are possible and
meaningful for security — future work.

s Example: Chinese-Wall policies

Back to Security-Preserving
Mapping

m M2 (S, XCy) ?70Q,7 (SgxCp) ? Qg

m M IS Security preserving, If it maintains
results of security analyses.

m If m Is efficient, we can use analysis In B
for analysis in A.

s Comparison to NP-hardness reductions.

Strongly Security Preserving
Mapping

m M Is strongly-security preserving, If it
maintains results of compositional security
analyses.

s Compositional security analysis: allows a
propositional logic formula of queries.

m Strongly security preserving implies security
preserving.

Return to our Example: SDCO

= Suppose s satisfies: " wl O, $ exactly
one s | P, such thatown | M(s, w]

createObject(i,0) destroyObiject(i,o0)
create object o if own 1 M[i,0]
enter own into M[i,0] destroy object o

transferOwn(i,p,0) _
if own T M[i,o] grant_r(i,p.0)
if own | M[i,o]

enter r into M[p,0]

enter own into M[p,0]
remove own from M[i,o]

SDCO (contd.)

m C maintains invariant.

s Let wl O, with owner s,.
m Can reach a state in which s, Is the owner.

m Cannot reach state, s’, in which more than
one owner, or no owner (whenw | Og)

m Can represent each of the above as
formula of queries from Q.

Results for SDCO and ARBAC97

m There exists a security preserving
mapping from SDCO to ARBAC9Y.

m There exists no strongly-security
preserving mapping from SDCO to
ARBAC9Y7.

s Any ARBAC97 system must enter “extra” or

“pbad” state that violates invariant in trying to
maintain It.

Contents

1. Access control
m Protection State, Queries, State-change rules
m SDCO and ARBAC97 schemes

2. Comparing Schemes
s Our approach

3. More Usable Definitions
m Proof strategy, results

4. Application: limited expressive power of HRU
5. Conclusion

More Usable Definitions

m Are there corresponding reachable states
under m?

m Reduction: for each query.
m State-matching reduction: for all queries.

More Usable Definitions (contd.)

m Necessary and sufficient conditions for
m Security-preserving mapping: reduction

m strongly security-preserving mapping: state-
matching reduction

m Reduction: A=¢ B
m State-Matching Reduction: A =, B

Proof Strategy

m If there exists (state-matching) reduction:
m By construction of m
m Show properties are satisfied

m If there exists no (state-matching)
reduction:
= By contradiction

m FInd system in A and reachable state, s, such
that for any corresponding system in B, In
reaching m(s,), we have to traverse a “bad”
state.

Results

m SDCO =, ARBAC97 scheme.

s SDCO ?-, ARBAC97 scheme.

m URA97 scheme =, RT[?, n] scheme.

s ATAM ?, TAM.

m Graham-Denning scheme ?; HRU scheme.

m RT[] scheme ?,HRU scheme.

Contents

1. Access control
m Protection State, Queries, State-change rules
m SDCO and ARBAC97 schemes

2. Comparing Schemes
s Our approach

3. More Usable Definitions
m Proof strategy, results

4. Application: limited expressive power of HRU
5. Related work, Conclusion

HRU Scheme

m S = access matrix instances

m C = all command-sets, with each command:
command c(p,, P,, -, Pp)

ifr, T MIpp] 2 ... 21,1 MIpy, p]
primitive op 1
primitive op 2

= Primitive op: create subject/object, destroy
subject/object, enter/remove right.

s Q: () r1 M[s,w]; @) r1 M[s,w]

HRU Scheme (contd.)

m Safety problem: can a right appear where
It does not exist In start-state?

m Result: undecidable in general

m Import of result:
m “Safety Is undecidable in DAC”
= “Shows limits of formal methods in security”
s “HRU scheme is too expressive”

RT[] Scheme

m S = collection of assertions of two kinds:
m A.r ? B (simple member)
m A.r ? B.ry(simple inclusion)
m C = (G, H)
m G: set of growth-restricted roles
m H: set of shrink-restricted roles
m Q:(1){B}?Au;
(2) Ar? {B};
(3) Ar? B.ry

Result and Intuition

m RT[] scheme ?cHRU scheme

m RT[] system:
m Start with A.r being empty, and not growth-restricted.

m Adding a single statement A.r ? B causes an
unbounded number of queries of the form { B’ } ? A.r
to become false.

s Any HRU system has to traverse “bad” state.

s Only bounded number of queries can change from
true to false (or vice versa) in single state-change.

Contents

1. Access control
m Protection State, Queries, State-change rules
m SDCO and ARBAC97 schemes

2. Comparing Schemes
s Our approach

3. More Usable Definitions
m Proof strategy, results

4. Application: limited expressive power of HRU
5. Related Work, Conclusion

Related Work

m Based on preservation of safety:
s Sandhu (JCS, '92)
s Ammann, Lipton, Sandhu (JCS, '96)
s Sandhu, Ganta (CSFW, '93)

s Not based on preservation of safety:
m Bertino, Catania, Ferrari, Perlasca (TISSEC, ‘03)
s Chander, Dean, Mitchell (CSFW, '01)
m Osborn, Sandhu, Munawer (TISSEC, '00)

Summary

= A theory for comparing access control
models based on expressive power.

s Validated with applications
x ATAM, TAM relationship was an open problem

s SDCO, ARBAC97 result contradicts existing
assertion from literature

m Results on HRU are first formal evidence of its
limited expressive power

