CS590U
Access Control: Theory and
Practice

Lecture 20 (March 24)
Security Analysis in Trust Management

i What is Security Analysis?

Inspired by safety analysis, which was initially
formalized by Harrison et al.

An access control policy verification technique

Studies properties of access control systems whose
state may change

Precisely evaluates which principals/users are trusted
for what properties.

The Abstract Security Analysis

i Problem

s Glven a start state P,

= aquery Q,
= and a rule R that determines how states can change
(defines reachability among states);

s Ask
= Is Q possible? (existential)
= Whether $ reachable P’ s.t. Q is true in P’
= Is Q necessary? (universal)

= Whether " reachable P’ , Q is true in P’

i How to Use Security Analysis

= Guarantee safety and availability properties of
an AC system:

= Properties one wants to guarantee are encoded in a
set of queries

= R identifies trusted principals

= assumes that parts under these principals’ control do
not change

« Trusted principals perform security analysis before
making changes

Security Analysis in RBAC

N. LI & M. Tripunitara
SACMAT 2004

i Security Analysis in RBAC

= RBAC state is &JA, PA, RHNn

= State change rules: admin model, e.g.
ARBAC97 [Sandhu et al., TISSEC’99]

= Queries:
»« Have the form “userSet, ? userSet, ?”
= e.9. “Isr,Cr, ? {ul,u2}?”
= Called semi-static if either userSet, or userSet, can
be evaluated independent of the state

i Admin Models: AATU and AAR

= AATU = &an_assign, Tin
= can_assign |l RxC x 2R
=« ananager, employee ? engineer, {projLead}n
= T: aset of trusted users
= AAR = &an_assign, can_revoken
= can_revoke | R x 2R
= ananager, {projLead}n

i Results - AATU

= For semi-static queries, security analysis IS
efficient (polynomial time)

= For other types of queries, security analysis is
decidable, but intractable (coNP-hard)

i Results - AAR

= For semi-static queries, security analysis IS
efficient.

= For other queries, security analysis Is
decidable, but intractable (coNP-complete)

i How We Showed This

= We present a reduction from our security
analysis instances to instances in RT

= Mapping:
= Input: RBAC &state, query, state-change rulef
« Output: RT &state, query, state-change rulen

10

Beyond Proof-of-Compliance:
Security Analysis In Trust
Management

N. Li, J.C. Mitchell & W.H. Winsborough.
To Appear in JACM.

Conference version in IEEE S&P 2003.

Motivation for Security Analysis In

i TM?

= Delegation is used extensively in TM

= Control may be delegated to partially trusted
principals

= What if one delegates to the wrong principal?

= How to ensure that desirable security
properties are maintained with delegation?

12

The TM Language
i RT[<, C]=RT,

= Basic concepts in RT[<=, C]:
= Principals: K, K, K,
= Role names: r, r, 1,

= Roles: K.r (K'sr role)
= each role has a member set

13

Statements in RT[<=, C]

s Type-1: Kior—= K;
= mem[K.r] E {K;}

s Kyg-manager = Kyjie

m Type-2: Kir - K;.rp

= mem[K.r] E mem[K,.r,]
s Kego-admin = K z.manager

14

i Statements in RT[<=, C]

m Type-3: Kir = K.uri.r

= Let mem[K.r,] be {Ki, Kz, ¥4, Kn} mem[K.r] E
mem[Ki.r,] E mem[Kz.r,] E %
E mem[K.r,]

s Kggo-delegAccess = Kqq.admin.access

m Type-4: K.ur = Ki.ri € Koo
= mem[K.r] E mem[Ki.r,] C mem[Kz.r,]
s Kggg-access— Keo,.delegAccessCK,r.employee

15

i The Query Q

Form-1: mem[K.r] E {K,,%% K.} ?
s Form-2: {K,,% K.} E mem[K.r] ?
= Form-3: mem[K,.r,] E mem[K.r] ?

16

i The Semantic Relation

= A statement b a Datalog rule

» Kir= K, b m(K, r, K,)

» Kir= Kp.rg P m(K, r, z) ;- m(K,, ry, 2)
= A state P b a Datalog program SP[P]

= mem[K.r]° { K | m(K,r,K’) is in the minimal
Herbrand model of SP[P] }

17

i Example Queries & Answers

1. Kggp-access = Kqgg.admin

2. Kggp-admin = K z.manager

5. Kyg-employee = K z.manager
s. Kpg-manager = K.

5. Kyr-employee = Kg_,iq

mem|[Kc,.access] E {Kp,,i}? No
{KAIice’ KDavid} E mem[KSSO'employee]? Yes
mem[K,..employee] E mem[K.,,.access]? Yes

18

i The State-Change Rule R

O R:(G,S)
= G Is a set of growth-restricted roles
« if A.r 1 G, then cannot add “A.r = ¥”
= S Is a set of shrink-restricted roles
« if A.r 1 S, then cannot remove “A.r = ¥%”
= Motivation:

= Definitions of roles that are not under one’s control
may change

19

i Sample Analysis Queries

= Simple safety (existential form-1):
= Is mem[K.r] E {K,} possible?

= Simple availability (universal form-1):
= Is mem[K.r] E {K,} necessary?

= Bounded safety (universal form-2):
= Is {K,,% K.} E mem[K.r] necessary?

= Containment (universal form-3):
= Is mem[K,.r,] E mem[K.r] necessary?

20

i Example

1. Kggo-aCCeSS = Kggn.-admin

2. Kggp-access - Kqgo.delegAccess C K, z.employee
5. Kego-admin = K z.manager

.. Kggo-delegAccess = Kqon.admin.access

5. Kyr-employee - K, z.manager

6. Kg.employee = K ;.engineer

7. Kyg-manager = K,

s. Alice.access = Ky,

Legend: fixed

can grow, can shrink
21

i A Simple Availability Query

1. Kggo-aCCeSS = Kggn.-admin

0. og.aitCess o oo delegiceess C 7 employee
5. Kggp-admin = K z.manager
Ceoo.2legAceess - oo adimin.access
5. geemployee - o rnanzager
o.emoloyees - 1 endineer
7. Kyg-manager = K,
Aliceaccess -
Query: Is mem[Kqs, -access] E {K,;..} Necessary?
Answer: Yes. (Available)

Why: Statments 1, 3, and 4, cannot be removed

,.L A Simple Safety Query

2. Kggp-access - Kqgo.delegAccess C K, z.employee
5. Kggp-admin = K z.manager
.. Kggo-delegAccess = Kqon.admin.access

6. Kyg-manager = K,
7. Kyg.employee = K .engineer

8. Kyie-aCCESS = Ky
Query: Is mem[Kseo.access] E {K. .} possible?
Answer: Yes. (Unsafe)
Why: Both K, z.engineer angd K,;...access may grow.

A Containment Analysis Query
i about Safety

1. Kggo-aCCeSS = Kggn.-admin
2. Kggp-access - Kqgo.delegAccess C K, z.employee
5. Kggp-admin = K z.manager

5. Kyr-employee - K, z.manager

Query: Is mem[K,z.employee] E mem[K..,.access] necessary?

Answer: Yes. (Safe)

Why: Ksso-access and Kqgn.admin cannot grow and
Statement 5 cannot be rentbved.

An Containment Analysis Query
about Availability

1. Kggp-access = Kegp.admin

0. og.aitCess o oo delegiceess C 7 employee
5. Kggp-admin = K z.manager
Ceoo.2legAceess - oo adimin.access

ernployee - mnarnager

'/ . NP 4 - PR
) N/ — arnc an
I/ N - I/
- cler - _
o g HIEHIESL = s
Allce.aiccess - 1

Query: Is mem[Kqso.access] E mem[K,,.manager] necessary?
Answer: Yes. (Available)

Why: Statements 1 and 3 cannot be removed
25

Form-1 and Form-2 Queries

= PTIME
= Form-1 queries are monotonic in P
= Form-2 queries are anti-monotonic in P

= Use the minimal reachable state to answer
universal form-1 and existential form-2

= The maximal reachable state answers existential
form-1 and universal form-2

= the state is simulated by a logic program

Reminder: Form-1 query: mem[K.r] E {K,,%,K }
Form-2 query: 26{K1,1/4,Kn} E mem[K.r]

Universal Form-3 ©
i Containment Analysis

= With just type 1 and 2 statements
= containment analysis is in PTIME
= using logic programs with stratified negation
= With type 1, 2, and 4 statements

= containment analysis is cONP-complete

= equivalent to determining validity of propositional-
logic formulas

Reminder:
Queries: Form-3: mem[K,.r,] E mem[K.r]
Statements: Type-1: Kir = K,

Type-2: K.or= Kp.rg
Type-4: K.r = ﬂrlc; Ks.I>

Universal Form-3
i (Containment Analysis)

s RT[<] (Type 1, 2, and 3 statements)
= containment analysis is PSPACE-complete
= RT[¢=] U string-rewriting systems

= equivalent to determining containment of languages
accepted by NFA's

= remains PSPACE-complete without shrinking
= CONP-complete without growing

Reminder: Type-1: Kir = K,
Type-2: K.or= Kp.rg
Type-3: K.r = $gri.r

Universal Form-3
i (Containment Analysis)

= RT[<,C] (all four types of statements)

= In CONEXP

= although infinitely many new principals and
statements may be added, if the containment does
not hold, there exists a counter example whose size
IS at most exponential

« PSPACE-hard
= exact complexity still open!
= CONP-complete without growing

29

Summary of Complexities for
‘L Containment Analysis

Type-1 and 2:
PTIME

/\

Type-1, 2, and 3: Type-1, 2, and 4:
PSPACE-complete coNP-complete

\/

Type-1, 2, 3, and 4:
PSPACE-hard, coNEXP

30

i Summary

The analysis problem: Given P, Q, and R, is Q
possible, Is Q necessary?

= Certain classes of security analysis in RBAC reduce to
that in RT[<=,C]

= Security analysis problems for RT[<=,C]
= decidable
= efficiently decidable for most queries

= for containment analysis, complexity depends on delegation
features of the policy language

31

Mapping the HRU model to
the Abstract Analysis Problem

= P: an access matrix

= R: the protection system state can change by
executing commands

= e.9., ¢(x,y,z) {if ‘own'l cell(x,z) U ‘controls’
| cell(x,y) then add ‘read’ to cell(y,z)}

= Q: is rl cell(s,0) possible?
= Simple safety queries only

= Main result in the HRU model
= simple safety Is undecidable

32

i Relating RT[<=,C] with HRU

= Role memberships determined by a RT[<=,C]
state IS an access matrix
= principals correspond to both subjects and objects

= KT meml[K.r] U
subject K, has right r over object KU r |
cell(K,,K)

= Adding a type-1 statement K.r = K;
= adding r into cell(K,, K)

33

i Relating RT[<=,C] with HRU

= Adding a type-2 statement K.r = K;.ry

= for every K' such that K'I mem[K,.r,] addr
Into cell(K’,K)

= need to run an HRU command for every principal

= this propagation needs to happen every time the
matrix i1s changed

34

Access

MatriF:

Triggers:

K, K, Ky | K,
Kl
K, I r
Ks I r
K4 I r I
2." K, execute rr'(K,,K,,K")
4. " K',K” execute r'rr(K,,K",K")

1. Add K,.r = K,

2. Add K..r' = K,.r
3. Add K,.r = K,

4. Add K,.r = K,.r.r
5. Add K,.r' = K,

rr'(x,y,z) {if r1 cell(z,y) then add r to cell(z,x) }
r'rr(x,y,z) { if r1 cell(z,y) Url cell(y,x) then add r’ to cell(z,x) }

Can HRU simulate RT?
i (Probably not!)

m It seems that HRU cannot simulate RT

= Adding one statement corresponds to executing
multiple HRU commands

= Seems unable to simulate the effect of propagation
= Unclear how to simulate removal of statements

36

Why Our Problem is
Decidable?

= Note that we consider queries that are more
complicated than simple safety
= €.g., containment analysis

= Some parameters in our analysis problem are
simpler
= NO need to consider arbitrary commands
= only four types of statements
= restriction rules are static

37

i Next Lecture

= Automated Trust Negotiation

38

