
CS590U
Access Control: Theory and 
Practice

Lecture 20 (March 24)
Security Analysis in Trust Management



2

What is Security Analysis?
n Inspired by safety analysis, which was initially 

formalized by Harrison et al.
n An access control policy verification technique
n Studies properties of access control systems whose 

state may change
n Precisely evaluates which principals/users are trusted 

for what properties.



3

The Abstract Security Analysis 
Problem

n Given a start state P, 
n a query Q,
n and a rule R that determines how states can  change 

(defines reachability among states);

n Ask
n Is Q possible?  (existential)

n whether ∃ reachable P’ s.t. Q is true in P’

n Is Q necessary? (universal)
n whether ∀ reachable P’ , Q is true in P’



4

How to Use Security Analysis
n Guarantee safety and availability properties of 

an AC system: 
n Properties one wants to guarantee are encoded in a 

set of queries
n R identifies trusted principals

n assumes that parts under these principals’ control do 
not change

n Trusted principals perform security analysis before 
making changes



Security Analysis in RBAC

N. Li & M. Tripunitara
SACMAT 2004



6

Security Analysis in RBAC
n RBAC state is 〈UA, PA, RH〉
n State change rules: admin model, e.g. 

ARBAC97 [Sandhu et al., TISSEC’99]
n Queries: 

n Have the form “userSet1 ? userSet2 ?”
n e.g. “is r1∩r2 ? {u1,u2}?’’

n Called semi-static if either userSet1 or userSet2 can 
be evaluated independent of the state



7

Admin Models: AATU and AAR

n AATU = 〈can_assign, T〉
n can_assign ⊆ R x C x 2R

n 〈manager, employee ? engineer, {projLead}〉

n T: a set of trusted users

n AAR = 〈can_assign, can_revoke〉
n can_revoke ⊆ R x 2R

n 〈manager, {projLead}〉



8

Results - AATU

n For semi-static queries, security analysis is 
efficient (polynomial time)

n For other types of queries, security analysis is 
decidable, but intractable (coNP-hard)



9

Results - AAR

n For semi-static queries, security analysis is 
efficient.

n For other queries, security analysis is 
decidable, but intractable (coNP-complete)



10

How We Showed This
n We present a reduction from our security 

analysis instances to instances in RT
n Mapping:

n Input: RBAC 〈state, query, state-change rule〉
n Output: RT 〈state, query, state-change rule〉



Beyond Proof-of-Compliance: 
Security Analysis in Trust 
Management

N. Li, J.C. Mitchell & W.H. Winsborough.  
To Appear in JACM. 

Conference version in IEEE S&P 2003.



12

Motivation for Security Analysis in 
TM?

n Delegation is used extensively in TM
n Control may be delegated to partially trusted 

principals
n What if one delegates to the wrong principal?
n How to ensure that desirable security 

properties are maintained with delegation?



13

The TM Language 
RT[Z, ∩]=RT0

n Basic concepts in RT[Z, ∩]:
n Principals: K, K1, K2

n Role names: r, r1, r2

n Roles: K.r   (K’s r role)

n each role has a member set



14

Statements in RT[Z, ∩]
n Type-1: K.r ← K1

n mem[K.r] ⊇ {K1}
n KHR.manager ← KAlice

n Type-2: K.r ← K1.r1

n mem[K.r] ⊇ mem[K1.r1] 
n KSSO.admin ← KHR.manager



15

Statements in RT[Z, ∩]
n Type-3: K.r ← K.r1.r2

n Let mem[K.r1] be {K1, K2, …, Kn} mem[K.r] ⊇
mem[K1.r2] ∪ mem[K2.r2] ∪ …
∪ mem[Kn.r2]

n KSSO.delegAccess ← KSSO.admin.access

n Type-4: K.r ← K1.r1 ∩ K2.r2

n mem[K.r] ⊇ mem[K1.r2] ∩ mem[K2.r2]
n KSSO.access←KSSo.delegAccess∩KHR.employee



16

The Query Q

n Form-1: mem[K.r] ⊇ {K1,…,Kn} ?
n Form-2: {K1,…,Kn} ⊇ mem[K.r] ?
n Form-3: mem[K1.r1] ⊇ mem[K.r] ?



17

The Semantic Relation

n A statement ⇒ a Datalog rule
n K.r ← K2 ⇒ m(K, r, K2)
n K.r ← K1.r1 ⇒ m(K, r, z) :- m(K1, r1, z)
n …

n A state P ⇒ a Datalog program SP[P]
n mem[K.r] ≡ { K’ | m(K,r,K’) is in the minimal 

Herbrand model of SP[P] }



18

Example Queries & Answers
1. KSSO.access ← KSSO.admin
2. KSSO.admin ← KHR.manager
3. KHR.employee ← KHR.manager
4. KHR.manager ← KAlice

5. KHR.employee ← KDavid

mem[KSSO.access] ⊇ {KDavid}? No
{KAlice, KDavid} ⊇ mem[KSSO.employee]?          Yes
mem[KHR.employee] ⊇ mem[KSSO.access]?    Yes



19

The State-Change Rule R
n R=(G,S)

n G is a set of growth-restricted roles
n if A.r ∈ G, then cannot add “A.r ← …”

n S is a set of shrink-restricted roles
n if A.r ∈ S, then cannot remove “A.r ← …”

n Motivation:
n Definitions of roles that are not under one’s control 

may change



20

Sample Analysis Queries
n Simple safety (existential form-1):

n Is mem[K.r] ⊇ {K1} possible?

n Simple availability (universal form-1):
n Is mem[K.r] ⊇ {K1} necessary?

n Bounded safety (universal form-2):
n Is {K1,…,Kn} ⊇ mem[K.r] necessary?

n Containment (universal form-3): 
n Is mem[K1.r1] ⊇ mem[K.r] necessary?



21

Example
1. KSSO.access ← KSSO.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager
4. KSSO.delegAccess ← KSSO.admin.access
5. KHR.employee ← KHR.manager
6. KHR.employee ← KHR.engineer
7. KHR.manager ← KAlice

8. Alice.access ← KBob

Legend: fixed
can grow, can shrink



22

A Simple Availability Query
1. KSSO.access ← KSSO.admin
2.2.2. KKKSSOSSOSSO.access .access .access ←←← KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ∩∩∩ KKKHRHRHR.employee.employee.employee
3. KSSO.admin ← KHR.manager
4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7. KHR.manager ← KAlice

8.8.8. Alice.accessAlice.accessAlice.access ←←← KKKBobBobBob

Query: Is mem[KSSO .access] ⊇ {KAlice} necessary?  
Answer: Yes.  (Available)
Why: Statments 1, 3, and 7 cannot be removed



23

1.1.1. KKKSSOSSOSSO.access.access.access ←←← KKKSSOSSOSSO.admin.admin.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager
4. KSSO.delegAccess ← KSSO.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6. KHR.manager ← KAlice

7. KHR.employee ← KHR.engineer
8. KAlice.access ← KBob

A Simple Safety Query

Query: Is mem[KSSO.access] ⊇ {KEve} possible?  
Answer: Yes.  (Unsafe)
Why: Both KHR.engineer and KAlice.access may grow. 



24

A Containment Analysis Query 
about Safety
1. KSSO.access ← KSSO.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager
4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5. KHR.employee ← KHR.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7.7.7. KKKHRHRHR.manager.manager.manager ←←← KKKAliceAliceAlice

8.8.8. KKKAliceAliceAlice.access.access.access ←←← KKKBobBobBob

Query:    Is mem[KHR.employee] ⊇ mem[KSSO.access] necessary?  
Answer:  Yes. (Safe)
Why: KSSO.access and KSSO.admin cannot grow and 

Statement 5 cannot be removed.



25

An Containment Analysis Query 
about Availability
1. KSSO.access ← KSSO.admin
2.2.2. KKKSSOSSOSSO.access .access .access ←←← KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ∩∩∩ KKKHRHRHR.employee.employee.employee
3. KSSO.admin ← KHR.manager
4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7.7.7. KKKHRHRHR.manager.manager.manager ←←← KKKAliceAliceAlice

8.8.8. Alice.accessAlice.accessAlice.access ←←← KKKBobBobBob

Query:    Is mem[KSSO.access] ⊇ mem[KHR.manager] necessary?  
Answer:  Yes. (Available)
Why: Statements 1 and 3 cannot be removed



26

Form-1 and Form-2 Queries
n PTIME

n Form-1 queries are monotonic in P
n Form-2 queries are anti-monotonic in P
n Use the minimal reachable state to answer 

universal form-1 and existential form-2
n The maximal reachable state answers existential 

form-1 and universal form-2
n the state is simulated by a logic program

Reminder:   Form-1 query: mem[K.r] ⊇ {K1,…,Kn} 
Form-2 query: {K1,…,Kn} ⊇ mem[K.r]



27

Universal Form-3 ≡
Containment Analysis

n With just type 1 and 2 statements
n containment analysis is in PTIME 

n using logic programs with stratified negation

n With type 1, 2, and 4 statements
n containment analysis is coNP-complete

n equivalent to determining validity of propositional-
logic formulas

Queries: Form-3: mem[K1.r1] ⊇ mem[K.r]
Statements:     Type-1: K.r ← K1

Type-2: K.r ← K1.r1

Type-4: K.r ← K1.r1 ∩ K2.r2

Reminder:



28

Universal Form-3 
(Containment Analysis)

n RT[Z] (Type 1, 2, and 3 statements)
n containment analysis is PSPACE-complete

n RT[Z] ⇔ string-rewriting systems
n equivalent to determining containment of languages 

accepted by NFA’s

n remains PSPACE-complete without shrinking
n coNP-complete without growing

Reminder: Type-1: K.r ← K1

Type-2: K.r ← K1.r1

Type-3: K.r ← K.r1.r2



29

Universal Form-3 
(Containment Analysis)

n RT[Z,∩] (all four types of statements)
n in coNEXP

n although infinitely many new principals and 
statements may be added, if the containment does 
not hold, there exists a counter example whose size 
is at most exponential

n PSPACE-hard
n exact complexity still open!
n coNP-complete without growing



30

Summary of Complexities for 
Containment Analysis

Type-1 and 2: 
PTIME

Type-1, 2, and 3: 
PSPACE-complete

Type-1, 2, and 4: 
coNP-complete

Type-1, 2, 3, and 4: 
PSPACE-hard, coNEXP



31

Summary
n The analysis problem: Given P, Q, and R, is Q 

possible, is Q necessary?
n Certain classes of security analysis in RBAC reduce to 

that in RT[Z,∩]
n Security analysis problems for RT[Z,∩]

n decidable
n efficiently decidable for most queries
n for containment analysis, complexity depends on delegation 

features of the policy language



32

Mapping the HRU model to 
the Abstract Analysis Problem

n P: an access matrix
n R: the protection system state can change by 

executing commands
n e.g., c(x,y,z) { if ‘own’∈cell(x,z) ∧ ‘controls’

∈cell(x,y) then add ‘read’ to cell(y,z)}
n Q: is r∈cell(s,o) possible? 

n simple safety queries only
n Main result in the HRU model

n simple safety is undecidable



33

Relating RT[Z,∩] with HRU
n Role memberships determined by a RT[Z,∩] 

state is an access matrix
n principals correspond to both subjects and objects
n K1∈ mem[K.r] ⇔

subject K1 has right r over object K ⇔ r ∈
cell(K1,K)

n Adding a type-1 statement K.r ← K1
n adding r into cell(K1, K)



34

Relating RT[Z,∩] with HRU

n Adding a type-2 statement K.r ← K1.r1

n for every K’ such that K’ ∈ mem[K1.r1] add r 
into cell(K’,K)

n need to run an HRU command for every principal
n this propagation needs to happen every time the 

matrix is changed



35

K4

K3

K2

K1

K4K3K2K1
1. Add K2.r ← K2

r

2. Add K1.r’ ← K2.r 

2. ∀ K’, execute rr’(K1,K2,K’)

rr’(x,y,z) { if r ∈ cell(z,y) then add r’ to cell(z,x) }

Access 
Matrix:

Triggers:

r’

r

3. Add K2.r ← K3

4. ∀ K’,K’’ execute r’rr(K2,K’,K’’)

r’rr(x,y,z) { if r’∈cell(z,y) ∧ r∈cell(y,x) then add r’ to cell(z,x) }

4. Add K2.r ← K2.r.r’

5. Add K3.r’ ← K4

r’

r’rr’



36

Can HRU simulate RT? 
(Probably not!)

n It seems that HRU cannot simulate RT
n Adding one statement corresponds to executing 

multiple HRU commands
n Seems unable to simulate the effect of propagation
n Unclear how to simulate removal of statements



37

Why Our Problem is 
Decidable?

n Note that we consider queries that are more 
complicated than simple safety
n e.g., containment analysis

n Some parameters in our analysis problem are 
simpler
n no need to consider arbitrary commands

n only four types of statements
n restriction rules are static



38

Next Lecture

n Automated Trust Negotiation


