
CS590U
Access Control: Theory and
Practice

Lecture 18 (March 10)
SDSI Semantics & The RT Family of

Role-based Trust-management
Languages

Understanding SPKI/SDSI
Using First-Order Logic

Ninghui Li and John C. Mitchell
International Journal of Information

Security. Preliminary version in CSFW
2003.

3

What is a Semantics?

n Elements of a semantics
n syntax for statements
n syntax for queries
n an entailment relation that determines whether a

query Q is true given a set P of statements

4

Why a Formal Semantics?

n What can we gain by a formal semantics
n understand what queries can be answered
n defines the entailment relation in a way that is precise,

easy to understand, and easy to compute
n How can one say a semantics is good

n subjective metrics:
n simple, natural, close to original intention

n defines answers to a broad class of queries
n can use existing work to provide efficient deduction

procedures for answering those queries

5

Summary of SDSI Semantics

n Rewriting based
n can answer queries such as can one string

rewrites into another one

n Set based
n can answer queries such as which principals are in

the valuation of a string

n Logic programming based
n First-Order Logic based

6

A Logic-Programming-based
Semantics

n Translate each 4-tuple into a LP clause
n Using a ternary predicate m

n m(K, A, K’) is true if K’ ∈ V (K A)
n (K A a K’) to m(K, A, K’)
n (K A a K1 A1) to m(K, A, ?x) :- m(K1, A1, ?x)
n (K A a K1 A1 A2)

to m(K,A,?x) :- m(K1,A1,?y1), m(?y1,A2,?x)
n (K A a K1 A1 A2 A3)

to m(K,A,?x) :- m(K1,A1,?y1), m(?y1,A2,?y2), m(?y2,A3,?x)

n The minimal Herbrand model determines the semantics

7

Example

From
(kC mit a kM)
(kM faculty a kEECS faculty)
(kC access a kC mit faculty secretary)

To
m(kC, mit, kM).
m(kM, faculty, Z) :- m(kEECS, faculty, Z).
m(kC, access, Z) :- m(kC, mit, Y1),

m(Y1, faculty, Y2), m(Y2, secretary, Z).

8

Set semantics is equivalent to
LP semantics

n The least Herbrand model of SP[P] is equivalent
to the least valuation, i.e.,
n K’ ∈ VP (K A) iff. m(K,A,K’) is in the least Herbrand

model of SP[P]

n Same limitation as set-based semantics
n does not define answers to containment between

arbitrary name strings

9

An Alternative Way of Defining
the LP-based Semantics (1)

n Define a macro contains
n contains[ω][K’] means that K’ ∈V (ω)

n contains[K][K’] ≡ (K= K’)
n contains[K A][K’] ≡ m(K, A, K’)
n contains[K A1 A2 … An][K’] ≡

∃y (m(K, A1, y) ∧ contains[y A2 … An][K’])
where n>1

10

An Alternative Way of Defining
the LP-based Semantics (2)

n Translates a 4-tuple (K A a ω) into a FOL
sentence
n ∀z (contains[K A][z] ⇐ contains[ω][z])

n This sentence is also a Datalog clause
n A set P of 4-tuples defines a Datalog program,

denoted by SP[P]
n The minimal Herbrand model of SP[P] defines the

semantics

11

An Example of Translation

From (KC access a KC mit faculty secretary)
to ∀z (contains[KC access][z] ⇐

contains[KC mit faculty secretary][z])
to ∀z (m(KC, access, z) ⇐

∃y1 (m(KC, mit, y1) ∧ contains[y1 faculty secretary][z])
to ∀z ∀y1 (m(KC, access, z) ⇐

m(KC, mit, y1) ∧
∃y2 (m(y1, faculty, y2) ∧ contains[y2 secretary] [z])

to ∀z ∀y1 ∀y2 (m(KC, access, z) ⇐
m(KC, mit, y1) ∧
m(y1, faculty, y2) ∧
m(y2, secretary, z]))

12

A First-Order Logic (FOL)
Semantics

n A set P of 4-tuples defines a FOL theory,
denoted by Th[P]

n A query is a FOL formula
n “ω1 rewrites into ω2” is translated into

∀z (contains[ω1][z] ⇐ contains[ω2][z])
n Other FOL formulas can also be used as queries

n Logical implication determines semantics

13

FOL Semantics is Extension of LP
Semantics

n LP semantics is FOL semantics with queries
limited to LP queries
n m(K,A,K’) is in the least Herbrand model of SP[P] iff.

Th[P] |= m(K,A,K’)

14

Equivalence of Rewriting
Semantics and FOL Semantics

n Theorem: for string rewriting queries, the string
rewriting semantics is equivalent to the FOL
semantics
n Given a set P of 4-tuples, it is possible to rewrite ω1

into ω2 using the 4-tuples in P if and only if
Th[P] ² ∀z (contains[ω1][z] ⇐

contains[ω2][z])

15

Advantages of FOL semantics:
Computation efficiency

n A large class of queries can be answered
efficiently using logic programs
n including rewriting queries
n e.g., whether ω rewrites into K B1 B2 under P can be

answered by determining whether SP[P∪(K’ A’_ω)∪(K
B1_K’1)∪(K’1 B2 _K’2)] ² m(K’,A’, K’2)
n where K’, K’1, and K’2 are new principals
n this proof procedure is sound and complete

n this result also follows from results in proof theory
regarding Harrop Hereditary formulas

16

Advantages of FOL semantics:
Extensibility

n Additional kinds of queries can be formulated
and answered, e.g.,
n ∀z (m(K1, A1, z) ⇐ m(K1, A2, z))

⇐ ∃z (m(K2, A1, z) ∧ m(K2, A2, z))

n Additional forms of statements can be easily
handled, e.g.,
n (K A a K1 A1 ∩ K2 A2) maps to

∀z (m(K,A,z) ⇐ m(K1,A1,z) ∧ m(K2,A2,z))

17

Summary: 4 Semantics for
SDSI

String Rewriting:
difficult to extend

Set:
limited in queries

Logic
Programming

First-Order
Logic

18

Advantages of FOL Semantics:
Summary

n Simple
n captures the set-based intuition
n defined using standard FOL

n Extensible
n additional policy language features can be handled

easily
n allow more meaningful queries

n Computation efficiency

Design of A Role-based Trust-
management Framework

Ninghui Li, John C. Mitchell & William H.
Winsborough

IEEE S&P 2002

20

Features of the RT family of TM
languages

n Expressive delegation constructs
n Permissions for structured resources
n A tractable logical semantics based on

Constraint Datalog
n Strongly-typed credentials and vocabulary

agreement
n Efficient deduction with large number of

distributed policy statements
n Security analysis

21

Expressive Features (part one)

I. Simple attribute assignment
StateU.stuID ← Alice

II. Delegation of attribute authority
StateU.stuID ← COE.stuID

III. Attribute inferencing
EPub.access ← EPub.student

IV. Attribute-based delegation of authority
EPub.student ← EPub.university.stuID

22

Expressive Features (part two)

V. Conjunction
EPub.access ← EPub.student ∩ ACM.member

VI. Attributes with fields
n StateU.stuID (name=.., program=.., …) ← Alice
n EPub.access ← StateU.stuID(program=“graduate”)

VII. Permissions for structured resources
n e.g., allow connection to any host in a domain and

at any port in a range

23

The Languages in the RT
Framework

RT0:
Decentralized Roles

RT1:
Parameterized Roles

RTT : for
Separation
of Duties

RTD: for
Selective Use of
Role memberships

RT2: Logical Objects

RTT and RTD can be used (either together or separately) with any
of the five base languages: RT0, RT1, RT2, RT1

C, and RT2
C

RT1C: structured resources

RT2C: structured resources

24

RT1 = RT0 + Parameterized
Roles

n Motivations: to represent
n attributes that have fields, e.g., digital ids, diplomas
n relationships between principals, e.g., physicianOf,

advisorOf
n role templates, e.g., project leaders

n Approach:
n a role term R has a role name and a list of fields

25

RT1 (Examples)

n Example 1: Alpha allows manager of an employee
to evaluate the employee:

Alpha.evaluatorOf(employee=y) ←
Alpha.managerOf(employee=y)

n Example 2: EPub allows CS students to access
certain resources:

EPub.access(action=‘read’, resource=‘file1’) ←
EPub.university.stuID(dept=‘CS’)

26

RT1 (Technical Details)

n A credential takes one of the following form:
1. K.r(h1, ..., hn) ß K2

2. K.r(h1, ..., hn) ß K1.r1(s1, ..., sm)
3. K.r(h1, ..., hn) ß K.r1(t1, ..., tL).r2(s1, ..., sm)
4. K.R ß K1.R1 ∩ K2.R2 ∩ ... ∩ Kk.Rk

n Each variable
n must have a consistent data type across multiple

occurrences
n can have zero or more static constraints
n must be safe, i.e., must appear in the body

27

Semantics and Complexity for
RT1

n LP semantics makes each role name a predicate
n E.g., K.r(h1, …, hn) ← K1.r1(s1, …, sm) translates to

r(K, h1, …, hn, ?X) :- r1 (K1, s1, …, sm, ?X)

n Apply known complexity results: The atomic
implications of SP(P) can be computed in
O(Nv+3)
n v is the max number of variables per statement
n Each role name has a most p arguments
n N = max(N0, pN0), N0 is the number of statements in P

28

RT2 = RT1 + Logical Objects

n Motivations:
n to group logically related objects together and assign

permissions about them together

n Approach: introducing o-sets, which are
n similar to roles, but have values that are sets of things

other than entities
n defined through o-set definition credentials, which are

similar to role-definition credentials in RT1

29

RT2 (Examples)

n Example 1: Alpha allows members of a project
team to read documents of this project
Alpha.documents(projectB) ß “design_Doc_for_projectB”
Alpha.team(projectB) ß Bob
Alpha.fileAccess(read, ?F ∈ Alpha.documents(?proj))
ß Alpha.team(?proj)

n Example 2: Alpha allows manager of the owner
of a file to access the file
Alpha.read(?F) ß Alpha.manager(?E ∈ Alpha.owner(?F))

30

RT T: Supporting Threshold and
Separation-of-Duty

n Threshold: require agreement among k principals
drawn from a given list

n SoD: requires two or more different persons be
responsible for the completion of a sensitive task
n want to achieve SoD without mutual exclusion, which is

nonmonotonic

n Though related, neither subsumes the other
n RT T introduces a primitive that supports both:

manifold roles

31

Manifold Roles

n While a standard role is a set of principals, a
manifold role is a set of sets of principals

n A set of principals that together occupy a
manifold role can collectively exercise privileges
of that role

n Two operators: ? , ?
n K1.R1 ? K2.R2 contains sets of two distinct principals,

one a member of K1.R1, the other of K2.R2

n K1.R1 ? K2.R2 does not require them to be distinct

32

RTT (Examples)

n Example 1: require a manager and an
accountant
n K.approval ß K.manager � K.accountant
n members(K.approval) ⊇ {{x,y} | x ∈ K.manager, y ∈

K.accountant}

n Example 2: require a manager and a different
accountant
n K.approval ß K.manager ⊗ K.accountant
n members(K.approval) ⊇

{{x,y} | x ≠ y, x ∈ K.manager, y ∈ K.accountant}

33

RTT (Examples)

n Example 3: require three different managers
n K.approval ß K.manager ⊗ K.manager ⊗

K.manager
n members(K.approval) ⊇ {{x,y,z} | x ≠ y ≠ z ∈

K.manager}

34

RT T Syntax

n Manifold roles can be used in basic RT
statements

n Also add two new types of policy statement
n K.R ← K1.R1 ? K2.R2 ? … ? Kk.Rk

n members(K.R) ? {s1 ? … ? sk | si ?members(Ki.Ri) for
1 = i = k }

n K.R ← K1.R1 ? K2.R2 ? … ? Kk.Rk

n members(K.R) ? {s1 ? … ? sk | (si ?members(Ki.Ri) &
si n si ? Ø) for 1 = i ? j = k }

35

RT T Complexity

n ADSD must declare a size for each manifold role

n Given a set P of RT T statements, let t be the
maximal size of all roles in P. The atomic
implications of P can be computed in time

O (MN v+2t).

36

Implementation and Application
Status of RT

n Java Implementation of inference engine for RT0

n Preliminary version of RTML
n an XML-based Encoding of RT statements
n XML Schemas and parser exist
n Used in an ATN demo

n Applications
n U-STOR-IT: Web-based file storage and sharing
n August: A Distributed Calendar Program
n Automated Trust Negotiation Demo by NAI

37

Next Lecture

n Security analysis in Trust Management

