
CS590U
Access Control: Theory and 
Practice

Lecture 15 (March 8)
Distributed Credential Chain Discovery 

in Trust Management



2

Review: An Example in SDSI 
2.0

n SDSI Certificates
n (KC access a KC mit faculty secretary)
n (KC mit a KM)
n (KM faculty a KEECS faculty)
n (KEECS faculty a KRivest)
n (KRivest secretary a KRivest alice)
n (KRivest alice a KAlice)

n From the above certificates, KC concludes that 
KAlice has access
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Recap of the SDSI Rewriting-
based Semantics

n Defines answers to queries having the form 
“can ω1 rewrite into ω2?”

n Specialized algorithms (either developed for 
SDSI or for model checking pushdown 
systems) are needed

n Papers by Abadi and Halpern and van der 
Meyden try to come up with axiom systems 
for the rewriting semantics
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Defining Set-based Semantics 
(1)

n A valuation V maps each local name to a set of 
principals

n A valuation V can be extended to map each 
name string to a set of principals
n V (K) = { K }
n V (K A) = V (K A)

n V (K B1 … Bm) =     ∪ V (Kj B2… Bm)
j = 1..n

n where m>1 and V (K B1) = {K1, K2, …, Kn}
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Defining Set-based Semantics 
(2)

n A 4-tuple (K A a ω) is the following constraint
n V (K A)  ⊇ V (ω)

n The semantics of a set P of 4-tuples is the least 
valuation VP that satisfies all the constraints

n Queries
n “can ω rewrite into K?” answered by checking 

whether “K ∈ VP (ω)”.

n Does not define answers to “can ω1 rewrite into 
ω2”.
n asking whether VP (ω1) ⊇ VP (ω2) is incorrect
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Relationship Between Rewriting 
and Set Semantics

n Theorem: Given P, ω1, and ω2, ω1 rewrites into 
ω2 using P if and only if for any P’ ⊇ P, VP’ (ω1) 
⊇ VP’ (ω2).

n Corollary: Given P, ω, and K, ω rewrites into K 
using P if and only if VP (ω) ⊇ { K }
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What is RT?

n RT is a family of Role-based Trust-management 
languages

n Publications on RT
n Li, Winsborough & Mitchell: “Distributed Credential Chain Discovery in 

Trust Management”, JCS’01, CCS’01
n Li, Mitchell & Winsborough: “Design of a Role-Based Trust 

Management Framework”, S&P’02
n Li & Mitchell: “Datalog with Constraints: A Foundation for Trust 

Management Languages”, PADL’03
n Li & Mitchell: “RT: A Role-based Trust-management Framework”, 

DISCEX’03
n Li, Winsborough & Mitchell: “Beyond Proof-of-compliance: Safety and 

Availability Analysis in Trust Management”, S&P’03
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RT0: An Example

1. StateU.stuID ← Alice
2. ABU.accredited ← StateU
3. EPub.university ← ABU.accredited
4. EPub.student ← EPub.university.stuID
5. EPub.spdiscount ←

EPub.student ∩ EOrg.preferred
6. EOrg.preferred ← ACM.member
7. ACM.member ← Alice

n Together, the seven credentials prove that Alice 
is entitled to EPub’s spdiscount
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RT0: Concepts and Credentials

n Concepts:
n Entities (Principals): A, B, D
n Role names: r, r1, r2 , ...
n Roles: A.r, B.r1, ...  e.g., StateU.stuID

n Credentials:   A.r ← e
n Type-1:A.r ← D
n Type-2:A.r ← B.r1

n Type-3:A.r ← A.r1.r2

n e.g., EPub.student←EPub.university.stuID
n Type-4:A.r ← B1.r1 ∩ B2.r2 ∩ ... ∩ Bk.rk
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RT0 and SDSI 2.0

n SDSI 2.0 (The SDSI part of SPKI/SDSI 2.0)
n has arbitrarily long linked names, e.g., 

A.r1.r2.....rk, which can be broken up by 
introducing new role names

n RT0

n has intersection (type-4 credentials)
n is thus more expressive than SDSI 2.0

n algorithms for RT0 can be used for SDSI 2.0
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Goal-directed Chain Discovery

n Three kinds of queries and algorithms for 
answering them:
1. Given A.r, determines its members

– The backward search algorithm

2. Given D, determines the set of roles that D is a 
member of
– The forward search algorithm

3. Given A.r and D, determines whether D is a member 
of A.r
– The Bi-direction search algorithm
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Credential Graph GC

n Nodes:
n A.r and e for each credential  A.r ← e in C

n Credential edges:
n e → A.r for each credential A.r ← e in C

n Summary edges:
n B.r2 → A.r1.r2 if there is a path from B to A.r1

n D → A1.r1 ∩… ∩ Ak.rk
if there are paths from D to each Aj.rj

n Reachability in the credential graph is sound and 
complete wrt. the set semantics of RT0
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An Example Credential Graph

StateU.stuID

EPub.university

ABU.accredited

StateU

Alice

ACM.member

EOrg.preferred
EPub.university.stuID

EPub.student
EPub.spdiscount

EPub.student ∩ EOrg.preferred

Credential

Summary

Key
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The Forward Search 
Algorithm (Overview)

l Starts with one entity node
l Constructs a proof graph
l Each node in the graph stores its solutions: 
l roles that this node can reach (is a member of )

l Maintains a work list of nodes need to be processed
l Algorithm Outline:
l keep processing nodes in the work list until it is empty
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Forward Search In Action

ABU.accredited

0: Alice

StateU.stuIDStateU.stuID

EPub.student

3: ABU.accredited2: StateU
6: EPub.university

1: StateU.stuID

ABU.accredited
EPub.universityEPub.university EPub.university

EPub.student

7: Epub.university.stuID

9: EPub.student
EPub.student EPub.student

1. StateU.stuID ← Alice
2. ABU.accredited ← StateU
3. EPub.university ← ABU.accredited
4. EPub.student ← EPub.university.stuID

5: ABU 8: EPub

4: ABU.accredited.stuID
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The Backward and Bi-direction 
Search Algorithms (Overview)

n The backward algorithm differs from the 
forward algorithm in that:
n each node stores outgoing edges, instead of 

incoming ones
n each node stores entities that can reach it, 

instead of roles that it can reach
n the processing of a node is different

n traversing the other direction

n The bi-direction search algorithm combines 
backward search and forward search
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Backward Search In Action

2: EPub.student4: EPub.university.stuID

6: EPub.university8: ABU.accredited9: StateU

StateU StateU StateU

10: StateU.stuID

0: EPub.spdiscount 1: EPub.student ∩ EOrg.preferred

3: EOrg.preferred5: ACM.member7: Alice

Alice

Alice

Alice

AliceAlice

Alice Alice 

Alice Alice 
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Worst-Case Complexity

n Backward:  time O(N3+NM), space O(NM)
n N is the number of rules
n M is the sum of the sizes of all rules, 

n A.r ← f1∩…∩fk having size k, other credentials have 
size 1

n Forward: time O(N2M), space O(NM)
n However, this is goal oriented, making it much 

better in practice
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Why Develop These 
Algorithms?

n The queries can be answered using logic 
programs
n however, this requires collection of all credentials in the 

system
n The backward algorithm is a goal-directed top-

down algorithm
n The forward algorithm is a goal-directed bottom-

up algorithm
n Distributed discovery requires combination of both
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Distributed Storage of 
Credentials

n Example:
1. EOrg.preferred ← ACM.member
2. ACM.member ← Alice

n Who should store a credential?
n either issuer or subject

n It is not reasonable to require that
n all credentials are stored by issuers, or,
n all are stored by subjects.



AliceEPub

StateUABU

3. ABU.accredited ← StateU

1. COE.stuID ← Alice
4. EPub.university ← ABU.accredited
5. EPub.student ←

EPub.university.stuID

Who stores these statements?

2. StateU.stuID ← COE.stuID

COE
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Traversability of Edges and 
Paths

n A credential edge is 
n forward traversable,  if stored by subject
n backward traversable,  if stored by issuer
n confluent,  if either forward traversable or backward traversable

n A path e1è e2 is
n forward traversable,  if all edges on it are, or e1=e2
n backward traversable, if all edges on it are, or e1=e2
n confluent,  if it can be broken into e1èe’ → e’’è e2, 

n With e1èe’ forward, e’ → e’’ confluent, and e’’è e2
backward 
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Traversability of Edges and 
Paths (con’d)

StateU.stuID

Alice

EPub.university.stuID

EPub.student

EPub.university

ABU.accredited

StateU

Backward
(Issuer stored)

Forward
(Subject stored)

Key

Confluent

An edge B.r2 → A.r1.r2 has the same
traversability as B è A.r1
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How to Ensure that Every Path is 
Confluent?

n Goal: using constraints local to each credential to 
ensure that every path is confluent

n Approach:
n give each role name a traceability type
n introduce a notion of well-typed credentials

n Main idea:
n by requiring consistent storage strategy at role name 

level, we guarantee chains using well-typed credentials 
are confluent 
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Types of Role Names

n A role name has two types:
n Issuer side:

n issuer-traces-all
n issuer-traces-def
n issuer-traces-none

n Subject side:
n subject-traces-all
n subject-traces-none



AliceEPub

StateUABU

3. ABU.accredited ← StateU

1. COE.stuID ← Alice

4. EPub.university ← ABU.accredited
5. EPub.student ←

EPub.university.stuID

A Typing Scheme

2. StateU.stuID ← COE.stuID

COE
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Well-typed Credentials

n A credential A.r ← e is well-typed if :
n Both A.r and e are well typed

n A role A.r has the same type as r
n A role expression is well-typed if it is not both issuer-

none and subject-none
n If A.r is issuer-def or issuer-all, then A must store the 

credential
n If A.r is subject-all, then every subject of the credential 

must store it
n If A.r is issuer-all, then e must be issuer-all
n If A.r is subject-all, then e must be subject-all
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Agreement on Types and 
Meaning of Role Names

n An approach inspired by XML namespaces
n Use an Application Domain Specification Document 

(ADSD) to define a vocabulary
n Each role has a storage type

n Credentials have a preamble
n Which defines vocabulary identifier to correspond to an 

ADSD

n When using a role name, add a vocabulary identifier 
as prefix
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Main Result about Type 
System

n Given a set of well-typed credentials C, if  D 
è e
n D è e is confluent
n if e is issuer-traces-all, D è e is backward 

traversable
n if e is subject-traces-all, D è e is forward 

traversable
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Benefits of the Storage Type 
System

n Guarantees that chains of well-typed credentials 
can be discovered

n Enables efficient chain discovery by telling the 
algorithm whether forward or backward search 
should be used for an intermediate query

n Communicates the application domain knowledge 
to the algorithm
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Next Lecture

n More on SDSI Semantics and the RT 
Languages


