
CS590U
Access Control: Theory and
Practice

Lecture 15 (March 8)
Distributed Credential Chain Discovery

in Trust Management

2

Review: An Example in SDSI
2.0

n SDSI Certificates
n (KC access a KC mit faculty secretary)
n (KC mit a KM)
n (KM faculty a KEECS faculty)
n (KEECS faculty a KRivest)
n (KRivest secretary a KRivest alice)
n (KRivest alice a KAlice)

n From the above certificates, KC concludes that
KAlice has access

3

Recap of the SDSI Rewriting-
based Semantics

n Defines answers to queries having the form
“can ω1 rewrite into ω2?”

n Specialized algorithms (either developed for
SDSI or for model checking pushdown
systems) are needed

n Papers by Abadi and Halpern and van der
Meyden try to come up with axiom systems
for the rewriting semantics

4

Defining Set-based Semantics
(1)

n A valuation V maps each local name to a set of
principals

n A valuation V can be extended to map each
name string to a set of principals
n V (K) = { K }
n V (K A) = V (K A)

n V (K B1 … Bm) = ∪ V (Kj B2… Bm)
j = 1..n

n where m>1 and V (K B1) = {K1, K2, …, Kn}

5

Defining Set-based Semantics
(2)

n A 4-tuple (K A a ω) is the following constraint
n V (K A) ⊇ V (ω)

n The semantics of a set P of 4-tuples is the least
valuation VP that satisfies all the constraints

n Queries
n “can ω rewrite into K?” answered by checking

whether “K ∈ VP (ω)”.

n Does not define answers to “can ω1 rewrite into
ω2”.
n asking whether VP (ω1) ⊇ VP (ω2) is incorrect

6

Relationship Between Rewriting
and Set Semantics

n Theorem: Given P, ω1, and ω2, ω1 rewrites into
ω2 using P if and only if for any P’ ⊇ P, VP’ (ω1)
⊇ VP’ (ω2).

n Corollary: Given P, ω, and K, ω rewrites into K
using P if and only if VP (ω) ⊇ { K }

7

What is RT?

n RT is a family of Role-based Trust-management
languages

n Publications on RT
n Li, Winsborough & Mitchell: “Distributed Credential Chain Discovery in

Trust Management”, JCS’01, CCS’01
n Li, Mitchell & Winsborough: “Design of a Role-Based Trust

Management Framework”, S&P’02
n Li & Mitchell: “Datalog with Constraints: A Foundation for Trust

Management Languages”, PADL’03
n Li & Mitchell: “RT: A Role-based Trust-management Framework”,

DISCEX’03
n Li, Winsborough & Mitchell: “Beyond Proof-of-compliance: Safety and

Availability Analysis in Trust Management”, S&P’03

8

RT0: An Example

1. StateU.stuID ← Alice
2. ABU.accredited ← StateU
3. EPub.university ← ABU.accredited
4. EPub.student ← EPub.university.stuID
5. EPub.spdiscount ←

EPub.student ∩ EOrg.preferred
6. EOrg.preferred ← ACM.member
7. ACM.member ← Alice

n Together, the seven credentials prove that Alice
is entitled to EPub’s spdiscount

9

RT0: Concepts and Credentials

n Concepts:
n Entities (Principals): A, B, D
n Role names: r, r1, r2 , ...
n Roles: A.r, B.r1, ... e.g., StateU.stuID

n Credentials: A.r ← e
n Type-1:A.r ← D
n Type-2:A.r ← B.r1

n Type-3:A.r ← A.r1.r2

n e.g., EPub.student←EPub.university.stuID
n Type-4:A.r ← B1.r1 ∩ B2.r2 ∩ ... ∩ Bk.rk

10

RT0 and SDSI 2.0

n SDSI 2.0 (The SDSI part of SPKI/SDSI 2.0)
n has arbitrarily long linked names, e.g.,

A.r1.r2.....rk, which can be broken up by
introducing new role names

n RT0

n has intersection (type-4 credentials)
n is thus more expressive than SDSI 2.0

n algorithms for RT0 can be used for SDSI 2.0

11

Goal-directed Chain Discovery

n Three kinds of queries and algorithms for
answering them:
1. Given A.r, determines its members

– The backward search algorithm

2. Given D, determines the set of roles that D is a
member of
– The forward search algorithm

3. Given A.r and D, determines whether D is a member
of A.r
– The Bi-direction search algorithm

12

Credential Graph GC

n Nodes:
n A.r and e for each credential A.r ← e in C

n Credential edges:
n e → A.r for each credential A.r ← e in C

n Summary edges:
n B.r2 → A.r1.r2 if there is a path from B to A.r1

n D → A1.r1 ∩… ∩ Ak.rk
if there are paths from D to each Aj.rj

n Reachability in the credential graph is sound and
complete wrt. the set semantics of RT0

13

An Example Credential Graph

StateU.stuID

EPub.university

ABU.accredited

StateU

Alice

ACM.member

EOrg.preferred
EPub.university.stuID

EPub.student
EPub.spdiscount

EPub.student ∩ EOrg.preferred

Credential

Summary

Key

14

The Forward Search
Algorithm (Overview)

l Starts with one entity node
l Constructs a proof graph
l Each node in the graph stores its solutions:
l roles that this node can reach (is a member of)

l Maintains a work list of nodes need to be processed
l Algorithm Outline:
l keep processing nodes in the work list until it is empty

15

Forward Search In Action

ABU.accredited

0: Alice

StateU.stuIDStateU.stuID

EPub.student

3: ABU.accredited2: StateU
6: EPub.university

1: StateU.stuID

ABU.accredited
EPub.universityEPub.university EPub.university

EPub.student

7: Epub.university.stuID

9: EPub.student
EPub.student EPub.student

1. StateU.stuID ← Alice
2. ABU.accredited ← StateU
3. EPub.university ← ABU.accredited
4. EPub.student ← EPub.university.stuID

5: ABU 8: EPub

4: ABU.accredited.stuID

16

The Backward and Bi-direction
Search Algorithms (Overview)

n The backward algorithm differs from the
forward algorithm in that:
n each node stores outgoing edges, instead of

incoming ones
n each node stores entities that can reach it,

instead of roles that it can reach
n the processing of a node is different

n traversing the other direction

n The bi-direction search algorithm combines
backward search and forward search

17

Backward Search In Action

2: EPub.student4: EPub.university.stuID

6: EPub.university8: ABU.accredited9: StateU

StateU StateU StateU

10: StateU.stuID

0: EPub.spdiscount 1: EPub.student ∩ EOrg.preferred

3: EOrg.preferred5: ACM.member7: Alice

Alice

Alice

Alice

AliceAlice

Alice Alice

Alice Alice

18

Worst-Case Complexity

n Backward: time O(N3+NM), space O(NM)
n N is the number of rules
n M is the sum of the sizes of all rules,

n A.r ← f1∩…∩fk having size k, other credentials have
size 1

n Forward: time O(N2M), space O(NM)
n However, this is goal oriented, making it much

better in practice

19

Why Develop These
Algorithms?

n The queries can be answered using logic
programs
n however, this requires collection of all credentials in the

system
n The backward algorithm is a goal-directed top-

down algorithm
n The forward algorithm is a goal-directed bottom-

up algorithm
n Distributed discovery requires combination of both

20

Distributed Storage of
Credentials

n Example:
1. EOrg.preferred ← ACM.member
2. ACM.member ← Alice

n Who should store a credential?
n either issuer or subject

n It is not reasonable to require that
n all credentials are stored by issuers, or,
n all are stored by subjects.

AliceEPub

StateUABU

3. ABU.accredited ← StateU

1. COE.stuID ← Alice
4. EPub.university ← ABU.accredited
5. EPub.student ←

EPub.university.stuID

Who stores these statements?

2. StateU.stuID ← COE.stuID

COE

22

Traversability of Edges and
Paths

n A credential edge is
n forward traversable, if stored by subject
n backward traversable, if stored by issuer
n confluent, if either forward traversable or backward traversable

n A path e1è e2 is
n forward traversable, if all edges on it are, or e1=e2
n backward traversable, if all edges on it are, or e1=e2
n confluent, if it can be broken into e1èe’ → e’’ è e2,

n With e1èe’ forward, e’ → e’’ confluent, and e’’ è e2
backward

23

Traversability of Edges and
Paths (con’d)

StateU.stuID

Alice

EPub.university.stuID

EPub.student

EPub.university

ABU.accredited

StateU

Backward
(Issuer stored)

Forward
(Subject stored)

Key

Confluent

An edge B.r2 → A.r1.r2 has the same
traversability as B è A.r1

24

How to Ensure that Every Path is
Confluent?

n Goal: using constraints local to each credential to
ensure that every path is confluent

n Approach:
n give each role name a traceability type
n introduce a notion of well-typed credentials

n Main idea:
n by requiring consistent storage strategy at role name

level, we guarantee chains using well-typed credentials
are confluent

25

Types of Role Names

n A role name has two types:
n Issuer side:

n issuer-traces-all
n issuer-traces-def
n issuer-traces-none

n Subject side:
n subject-traces-all
n subject-traces-none

AliceEPub

StateUABU

3. ABU.accredited ← StateU

1. COE.stuID ← Alice

4. EPub.university ← ABU.accredited
5. EPub.student ←

EPub.university.stuID

A Typing Scheme

2. StateU.stuID ← COE.stuID

COE

27

Well-typed Credentials

n A credential A.r ← e is well-typed if :
n Both A.r and e are well typed

n A role A.r has the same type as r
n A role expression is well-typed if it is not both issuer-

none and subject-none
n If A.r is issuer-def or issuer-all, then A must store the

credential
n If A.r is subject-all, then every subject of the credential

must store it
n If A.r is issuer-all, then e must be issuer-all
n If A.r is subject-all, then e must be subject-all

28

Agreement on Types and
Meaning of Role Names

n An approach inspired by XML namespaces
n Use an Application Domain Specification Document

(ADSD) to define a vocabulary
n Each role has a storage type

n Credentials have a preamble
n Which defines vocabulary identifier to correspond to an

ADSD

n When using a role name, add a vocabulary identifier
as prefix

29

Main Result about Type
System

n Given a set of well-typed credentials C, if D
è e
n D è e is confluent
n if e is issuer-traces-all, D è e is backward

traversable
n if e is subject-traces-all, D è e is forward

traversable

30

Benefits of the Storage Type
System

n Guarantees that chains of well-typed credentials
can be discovered

n Enables efficient chain discovery by telling the
algorithm whether forward or backward search
should be used for an intermediate query

n Communicates the application domain knowledge
to the algorithm

31

Next Lecture

n More on SDSI Semantics and the RT
Languages

