
CS590U
Access Control: Theory and
Practice

Lecture 13 (February 22)
RBAC: Constraint Generation and

Administration

2

SSoD Policies

n The SoD principle: the collaboration of
multiple users is needed to perform some
sensitive tasks

n Static enforcement of SoD: multiple users
together have all permissions to perform
these tasks

n SSoD policies
n ssod({p1,p2,p3,p4}, 3) means that 3 users are

required to cover all permissions in {p1,p2,p3,p4},
i.e., no 2 users have all permissions in
{p1,p2,p3,p4}

Checking whether an RBAC state is safe wrt.

3

SMER Constraints

n smer({r1, … , rm}, t)
n means that no user can be authorized for t or

more roles from {r1, … , rm}

n Examples
n smer({r1,r2}, 2) means that r1 and r2 are mutually

exclusive, i.e., no user can be authorized for both
roles

n smer({r1,r2,r3}, 2) is equivalent to
{ smer({r1,r2}, 2), smer({r2,r3}, 2), smer({r1,r3},

2) }
n smer({r1,r2,r3}, 3) means that no user can be

authorized for all three roles

4

The Enforcement Verification
Problem

n EV: Given PA,RH, determine whether a set C
of SMER constraints enforces a set E of SSoD
policies.

n A special case, given RH={}, PA, verifying
whether a set of 2-2 SMER constraints
enforces one 2-n SSoD policy
ssod({p1,p2,…,pn}, 2) is coNP-complete.

5

The case in favor of SMER

n EV needs to be performed only when role-
role or permission-role relationships change.
These are infrequent.

n When (u,r) is added to UA, only SC-SMER
needs to be checked.
n which is efficient

n Complement of CEV reduces to SAT.

6

Generation of SMER

n How did SMER constraints get there in the
first place (for us to consider EV)?

n Alternate approach: start with set E of SSoD
policies, then generate SMER constraints.

n The generation problem
n Input: PA,RH,E
n Output: C
n Goal: C should implement 〈PA,RH,E〉 as precisely

as possible

7

First Step: From SSoD to
RSSoD

n SSoD policies are about permissions
n SMER constraints are about role memberships
n Need to translate requirements on

permissions to those on roles
n ssod({p1,…pn}, k) no k-1 users have all permissions
n rssod({r1,…,rn}, k) no k-1 users have all roles
n smer({r1,…,rm}, t) no single user has t or more roles

8

Example

n Example:
n E={ ssod({p1,p2,p3,p4,p5}, 3) }
n PA={(r1,p1), (r2,p2), (r3,p3), (r4,p4), (r4,p5)}
is equivalent to
n D={ rssod({r1,r2,r3,r4}, 3) }
under every RH

9

The Generation Problem
Restated

n Given a set D of RSSoD requirements and a
role hierarchy RH, generate a set C of SMER
constraints that implements D under RH

n Compatibility between C and RH
n SMER constraints may render some roles

unusable, e.g., given C={smer({r1,r2},2)} and
RH={r3≥r1, r3≥r2}, no user can ever be
authorized for r3

10

Implements

n Definition: C implements D under RH iff.
n C is compatible with RH

n every role in RH can be made nonempty without
violating C

n C enforces D under RH
n for every UA such that (UA,RH) satisfies C, (UA,RH)

is safe wrt D

11

Example
n D={ rssod({r1,r2,r3,r4}, 3) }
n RH={ r5≥r1, r5 ≥r2 }

n Then
n C1={ smer({r1,r2,r3},2) } enforces D,RH, but is

incompatible with RH
n C2={ smer({r1,r3,r4},2) } implements D,RH
n C3={ smer({r1,r3},2), smer({r2,r4},2),

smer({r3,r4},2) } also implements D,RH

12

Precise Implementation
n C is necessary to enforce D under RH

n if for every UA, (UA,RH) is safe wrt D and every
role in D has at least one authorized user implies
that (UA,RH) satisfies C

n C precisely enforces D under RH, iff
n C enforces D under RH, and
n C is necessary to enforce D under RH

n C precisely implements D under RH iff
n C implements D under RH, and
n C is necessary to enforce D under RH

13

Expressive Power Questions

n Do we need SMER constraints other than 2-
2? Answer: yes
n ex1: D = { rssod({r1,r2,r3}, 2) }, RH={r4≥r1, r4≥r2,

r5≥r1, r5≥r3, r6≥r2, r6≥r3}, C={smer({r1,r2,r3}, 3}
implements D, but no set of 2-2 SMER constraints
would be compatible with RH
n do we have such examples showing the need for k-

k SMER constraints for arbitrary k? Yes.

n ex2: when RH= ∅, to precisely enforce D = {
rssod({r1,r2,r3}, 2) }, one still need 3-3 SMER

14

Expressive Power Questions

n Can we do without 2-2 SMER (or 2-n SMER)?
Answer: No.

15

Restrictiveness of Constraints

n Goal: “least restrictive” set of constraints that
implements D under RH

n C1 is less restrictive than C2 under RH if the
UA’s allowed by C1 is a strict superset of the
UA’s allowed by C2.

n C is minimal if C implements D and no other
constraint that implements D is less
restrictive.

n If C is precise, then C is minimal.

16

Precise Implementation is not
always Possible

n D={ rssod({r1,r2,r3,r4}, 3) }
n RH={ r5≥r1, r5 ≥r2 }
n C2={ smer({r1,r3,r4},2) } implements D,RH
n C3={ smer({r1,r3},2), smer({r2,r4},2),

smer({r3,r4},2) } also implements D,RH

n Both C2 and C3 minimally enforce D under RH

17

A Generation Algorithm That
Works for RH=∅
Input: rssod(R, k)
Output: SMER constraints
1 Let n = |R|, S = emptyset
2 If k = 2 output smer(R, n)
3 Else
4 for all j from 2 to floor((n-1)/(k-1)) + 1
5 let m = (k-1)(j-1) + 1
6 for each size-m subset R’ of R
7 output smer(R’, j)

18

Output of the Algorithm

n If k = 2, output is smer(R, n)
n If k = n, output is smer(R, 2)
n In other cases, we get multiple outputs. Each

is sufficient to enforce the RSSoD
n each constraint that is generated is minimal.
n every singleton set of constraints that is minimal is

generated.

19

Open Problem

n How to generate sets of constraints that
minimally implement D under RH?

The ARBAC97 model for role-
based administration of roles

R.S. Sandhu, V. Bhamidipati, and Q.
Munawer

TISSEC February 1999.

21

Goal

n Decentralize the administration of RBAC, i.e.,
allowing others to change parts of
(UA,PA,RH)

n Overview
n there exist a set of administrative roles that are

disjoint from the regular roles

22

The URA97 Component

n Prerequisite condition
n e.g., r1∨(r2∧¬r3) is such a condition

n can_assign
n e.g., can_assign(a, cond, {r4,r5,r6})

n can_revoke
n e.g., can_revoke(a, {r4,r5})
n weak revocation vs. strong revocation

23

Role Ranges
n [x,y]={ r∈R | r≥x ∧ r=y }
n Shortcomings

n Deletion of one end points leave an invalid range, which is
disallowed in RRA. (disallowing this costs flexibility)

n Changes to role-role relationships could cause a range to
be drastically different from its original meaning (real
concern, viewed as some as feature)

n ARBAC97 still adopts role ranges
n convenient
n no loss of generality because every role can be represented

as a range (wrong, as using a range means that the role
cannot be removed)

24

Key Problem in Administration
of RBAC
n How to define the administration scope?
n Existing approaches are all based on role hierarchy

n ARBAC uses role ranges
n Crampton uses all roles dominated by a role
n Role Control Center uses all roles dominating a role

n Role hierarchy doesn’t seem be the right approach
for defining administrative scope.

n What else then?
n organization unit?
n some other attributes for roles?

25

The PRA97

n Treat permission assignment as dual to user
assignment
n can_assign

n e.g., can_assign(a, cond, {r4,r5,r6})
n can_revoke

n e.g., can_revoke(a, {r4,r5})

n Only way to restrict which permissions can be
assigned by a is through condition

n Permission assignment shouldn’t be dual of
user assignment

26

Administration of Roles

n Separate roles into
n abilities administered similar to PRA
n groups administered similar to URA
n UP-roles RRA

n can_modify(a, encapsulated_role_range)

27

Next Lecture

n Basics of Logic and Logic Programming

