
CS590U
Access Control: Theory and
Practice

Lecture 11 (February 15)
Role Based Access Control

Role-Based Access Control
Models.

R.S. Sandhu, E.J. Coyne, H.L.
Feinstein, and C.E. Youman.

IEEE Computer, 29(2):38--47,
February 1996.

3

n The most cited paper in access control
n 691 citations on google scholar

4

RBAC96 Family of Models

RBAC3: Role Hierarchies
+ Constraints

RBAC0: BASIC RBAC

RBAC1: Role
Hierarchies

RBAC2:
Constraints

5

RBAC0

Users Roles

User-Role
Assignment

Permissions

Permission-Role
Assignment

Sessions

* * * *

1

*

*

*

6

RBAC0: Formal Model
n U, R, P, S (users, roles, permissions, and sessions)
n PA ⊆ P × R (permission assignment)
n UA ⊆ U × R (user assignment)
n user: S → U
n roles: S → 2R

n requires roles(s) ⊆ { r | (user(s), r) ∈ UA }

Session s has permissions

∪ r ∈ roles(s) { p | (p, r) ∈ PA }

7

Why RBAC

n Fewer relationships to manage
n from O(mn) to O(m+n), where m is the number of

users and n is the number of permissions

n Roles add a useful level of indirection

8

RBAC1: RBAC0+ Role
Hierarchies

Primary-Care
Physician

Specialist
Physician

Physician

Health-Care Provider

9

RBAC1: Formal Model
n U, R, R, S, PA, UA, and user unchanged from RBAC0
n RH ⊆ R × R : a partial order on R, written as ≥
n roles: S → 2R

n requires roles(s) ⊆
{ r | ∃ r’ [(r’ ≥ r) & (user(s), r’) ∈ PA] }

Session s has permissions

∪ r ∈ roles(s) { p | ∃ r’’ [(r ≥ r’’) & (p, r’’) ∈ PA] }

10

On Modeling Role Hierarchy
As A Partial Order
n Modeling RH as a partial

order may miss some
important information

n Consider the two examples
to the right
n where the dashed edge is

added and removed

n Better approach seems to
remember the base edges
and then compute their
transitive and reflexive
closure

r1

r3

r2

r1

r3

r2

EX1:

EX2:

11

Semantics of Role Hierarchies

n User inheritance
n r1≥r2 means every user that is

a member of r1 is also a
member of r2

n Permission inheritance
n r1≥r2 means every permission

that is authorized for r2 is also
authorized r1

n Activation inheritance
n r1≥r2 means that activating r1

will also activate r2

Physician

Health-Care Provider

12

RBAC2: RBAC0 + Constraints

n No formal model specified
n A list of examples are given

13

Static Mutual Exclusion
Constraints

n Two mutually exclusive roles: cannot both
have the same user as members

n Two mutually exclusive roles: cannot both
have the same permissions
n why?

n Two mutually exclusive permissions: one role
cannot have both permissions
n why?

14

Cardinality Constraints

n On User-Role Assignment
n at most k users can belong to the role
n at least k users must belong to the role
n exactly k users must belong to the role

n On activation
n at most k users can activate a role
n …

15

Why Using Constraints?

n For laying out higher level organization policy
n simply a convenience when admin is centralized
n a tool to enforce high-level policies when admin is

decentralized

16

RBAC3

n RBAC0 + Role Hierarchies + Constraints

Some Issues in RBAC

18

Whether to Allow Multiple
Roles to be Activated?

n RBAC96 allows this
n [Baldwin’90] does not
n Observations:

n one can define new role to achieve the effect of
activating multiple roles

n dynamic constraints are implicit when only one
role can be activated in a session

19

What is a Role?

n A set of users
n A set of permissions (named protection

domains)
n A set of users and permissions
n Also affects how to interpret role hierarchies
n Maybe it is useful to have both roles and

groups?

20

Roles vs. Groups

n What are the differences?
n Answer 1: groups are sets of users, and roles are

sets of users as well as permissions
n doesn’t seem to be true.

n Answer 2: one can activate and deactivate roles,
but cannot deactivate groups
n seems unimportant unless there is negative

authorization
n Answer 3: one can enumerate permissions that a

role has
n seems an implementation issue

21

Everything as an attribute?

n Some attributes are more intrinsic about
properties of a user

n Some attributes are more intrinsic about job
functionalities

22

The NIST Standard

n Proposed NIST Standard for Role-Based
Access Control. David F. Ferraiolo, Ravi S.
Sandhu, Serban I. Gavrila, D. Richard Kuhn,
and Ramaswamy Chandramouli. TISSEC,
August 2001.

n ANSI Standard

23

Overview of the NIST
Standard for RBAC

Dynamic
Separation
of Duties

Core RBAC

Hierarchical
RBAC

Static
Separation of
Duties

24

Core RBAC (1)

n USERS
n ROLES
n OBS
n OPS
n PRMS = 2(OPS×OBS)

n Op : (p: PRMS) → 2OPS

n Ob : (p: PRMS) → 2OBS

25

Core RBAC (2)

n UA ⊆ USERS × ROLES
n assigned_users : (r :Roles) → 2USERS

n PA ⊆ PRMS × ROLES
n assigned_permissions : (r :Roles) → 2PRMS

26

Core RBAC (3)

n SESSIONS
n session_users : (s :SESSIONS) →USERS

n user_sessions : (u :USERS) → 2SESSIONS

n session_roles : (s :SESSIONS) → 2ROLES

n avail_session_perms :
(s :SESSIONS) → 2PRMS

27

Hierarchical RBAC:
Generalized Role Hierarchies

n RH ⊆ ROLES × ROLES
n user inheritance & permission inheritance
n we say r1 inherits r2 if r1 ≥ r2

n authorized_users : (r :Roles) → 2USERS

n authorized_permissions : (r :Roles) → 2PRMS

28

Hierarchical RBAC:
Limited Role Hierarchies

n Role Hierarchies with the limitation that each
role has at most one immediate senior
n Role hierarchies form a forest

29

Constrained RBAC:
Motivations

n Example of SoD
n The following duties shall be performed by

different individuals:
1. Check request reviewer
2. Check preparer
3. Check issuer
4. Check deliverer
5. Ledger reviewer

30

Constrained RBAC:
Static SoD

n SSD ⊆ (2ROLES×N) is a collection of pairs (rs,
n)
n rs: a role set
n n: n ≥2 is a natural number

n For each (rs, n), no user is authorized for n or
more roles in rs

31

SoD with Role Hierarchies

n Two roles can be mutually exclusive only if
neither one inherits the other

n If two roles are mutually exclusive, no role
can inherit from both

n If two roles are mutually exclusive, there can
be no “root” or “super user”.

32

Constrained RBAC:
Dynamic SoD

n DSD ⊆ (2ROLES×N) is a collection of pairs (rs,
n)
n rs: a role set
n n: n ≥2 is a natural number

n For each (rs, n), no user is allowed to
activate n or more roles in rs in one session

33

Functional Specifications

n Administrative functions
n Supporting system functions
n Review functions

Old Slides From Fall 2003

35

SoD and Permission
Assignments (1)

n Mutually exclusive roles is a means rather
than an end

n SoD is the goal:
n no single user possesses all the permissions

needed to accomplish a sensitive task

36

SoD and Permission
Assignments (2)

n A permission assignment problem
n Giving a set of tasks where each task requires a

set of permissions, assign permissions to roles
such that no single role has access to all
permissions required by any task

n Graph coloring problem

37

A Project Topic (1)

n How do we know SoD goals has been
achieved by constraints?
n sensitive tasks and the permissions they require

need to be identified

n SoD may be more complicated
n a sensitive task may be completed by a user

having some property

38

A Project Topic (2)

n Tasks:
n Design a language to specify SoD objectives.
n Given SoD objectives and permission assignments,

verify that constraints satisfy the objectives.
n Assume a fixed permission assignments, generate

mutually exclusive constraints to satisfy the SoD
objectives.

39

Next Lecture

n On SSoD policies and SMER constraints

