
CS590U
Access Control: Theory and
Practice

Lecture 9 (February 8)
Nondeducibility, Confinement & Covert

Channels

A Model of Information

David Sutherland

3

System Model

n A system is described by an abstract state
machine (similar to the noninterference
paper)
n a set of states
n a set of possible initial states
n a set of state transformations

n A possible execution sequence consists of
n an initial state
n a sequence of transformations applied to the

system

4

Information
n Consider each possible execution sequence as a

possible world.
n the system is one world

n An information function is one that maps each
possible world to a value

n Given a set W of all possible worlds, knowing no
information, the current world w could be any one in
W. Knowing that f1(w)=x, then one knows only
those in W such that f1()=x is possible.

5

Information Flow From f1 and
f2

n Given a set W of possible worlds and two
functions f1 and f2, we say that information
flows from f1 to f2 if and only if there exists
some possible world w and some value z in
the range of f2 such that
n ∀w’ (f1(w)=f1(w’) → f2(w’)? z)

6

Proposition

n Proposition: Given W, f1, f2, information does
not flow from f1 to f2 if and only if the
function f1 × f2 is onto.

n Corollary: The information flow relation is
symmetric

n Nondeducibility: a system is nondeducibility
secure if information does from flow from
high inputs to low outputs

7

Example: Stream Cipher

n Two high users & one low user
n high user A generates a message
n high user B generates a random string at a

constant rate
n the XOR of them (if A generates nothing, then 0 is

used) is send to the low user

n This is nondeducibility secure
n This is NOT noninterference secure

8

Relationships Between
Nondeducibility & Noninterference

n For deterministic systems with just one high
user and one low user, a system is
noninterference secure if and only if it is
nondeducibility secure.
n nondeducibility implies noninterference: no high

input is also a possible world
n noninterference implies nondeducbility: every

possible world is equivalent to the one with no
high-level input

9

Limitations of Nondeducibility
& Noninterference

n Nondeducability may be too weak
n Allows probabilistic reasoning
n The stream cipher example is still nondeducibility

secure even if high level user B generates 0 each
time with 99% probability

n Noninterference may be too strong
n as demonstrated by the stream cipher example

10

Comparisons of BLP &
Noninterference

n In general, BLP is weaker than
noninterference as it does not stop covert
channels

n Noninterference is weaker than BLP in that it
allows a low user to copy one high-level file
to another high-level file

n In both cases, noninterference seems closer
to intuition of security

A Note on the Confinement
Problem

Butler Lampson
CACM October 1973

12

The Confinement Problem

n Confine a program’s execution so that it
cannot transmit information to any other
program except its caller.

n Motivation:
n a customer uses a service program and wants to

ensure that the inputs are not leaked by the
service program

13

Ways to leak information

0. The service has memory and can be called
by its owner

1. The service writes to a permanent file that
can be read by its owner

2. The service writes to a temporary file that
can be read by its owner

3. The service sends a message to the owner’s
process using interprocess communication

14

Ways to leak information

4. Information may be encoded in the bill
rendered for the service, or payment for
resources used by the service program

5. Using file lock as a shared boolean variable
6. By varying its ratio of computing to

input/output or its paging rate, the service
can transmit information to a concurrently
running process

15

Confinement rules (from the
paper)

n A confined program must be memoryless,
i.e., it must not be able to preserve
information within itself from one call to
another

n Total isolation: A confined program shall
make no calls on any other program
n sufficient to ensure confinement
n quite impractical as even system calls may be

dangerous and thus need to be forbidden

16

Less Restrictive Case

n Trusted programs: programs trusted not to
leak data or help any confined program that
calls them leak data

n Transitivity: if a confined program calls
another program which is not trusted, then
the called program must also be confined.

n It is difficult to write a trustworthy operating
system, as some information path are subtle
and obscure.

17

Writing a Trustworthy
Program

n A trustworthy program must guard against
any possible leakage of data.

n In an operating system, the number of
possible channels is large, but finite.

n It is necessary to enumerate all of them and
to block each one.

18

Three Categories of Channels

n Storage: write/read files
n Legitimate: bill for the service program
n Covert: CPU/memory usage
n The following simple principle is sufficient to

block all legitimate & covert channels:
n Masking: A program is confined must allow its

caller to determine all its inputs into legitimate and
covert channels. We say that the channels are
masked by the caller.

19

On Blocking Covert Channels

n Enforcement: The supervisor must ensure
that a confined program’s input to covert
channels conforms to the caller’s
specifications.
n this may require slowing the program down,

generating spurious disk references, or whatever,
but it is conceptually straightforward

n The cost of enforcement may be high. A cheaper
altrenative is to bound the capacity of the covert
channels.

A Comment on the
Confinement Problem

Steven B. Lipner
SOSP 1975

21

Key observations

n The confinement problem is similar in
objective to MAC security
n the common objective is to stop information flow

n Supposedly, *-property solves confinement
problem for storage channels
n Identifying all objects is difficult, but can be done

22

Closing “Covert Channels” is
most difficult

n To close “timing channels”
n each subject must be constrained to see a virtual

time depending only on its activities
n seems to solve the covert channel problem
n unclear whether this is possible, because each

user also has sense of time outside the system

23

Conclusion of this paper

n While the storage and legitimate channels of
Lampson can be closed with a minimal impact
on system efficiency, closing the covert
channel seems to impose a direct and
unreasonable performance penalty.

n Closing the covert channels seems at a
minimum very difficult, and may very well be
impossible in a system where physical
resources are shared.

Other Discussions on Covert
Channels

25

Covert Channels in MLS

n Covert storage channels: In BLP, if a file is
considered to be an object, a low subject may
be able to see file names of high, which can
encode information.
n low users can write high files; thus it reasonable

to know names of high files

n Covert timing channels

26

n Covert channels are often noisy
n However, information theory and coding

theory can be used to encode and decode
information through noisy channels

n Military requires cryptographic components
be implemented in hardware
n to avoid trojan horse leaking keys through covert

channels

27

The Resource Matrix Approach

n An approach to systematically identify covert
channels

n Kemmerer: “Shared Resource Matrix
Methodology: An Approach to Identifying
Storage and Timing Channels”, ACM TOCS.
n Conference version in Oakland 1982.

28

Intuition

n Finding all resources that are shared between
high and low users
n covert channels reply on sharing of some resource

that can be used in an unexpected way to transfer
informaion

29

The Matrix

n Each system resource has a row
n Each lowest-level system operation that can

be performed on resources is a column
n Each cell contains a subset of {R,M}

n R means referencing the resource
n M means modifying the resource

30

Criteria for Identifying Covert
Channels

n E.g., a storage channel exists when a high
user can change an attribute of a shared
resource and a low user can detect the
change

n E.g., the criteria for a timing channel includes
a shared common attribute, a shared time
reference, and a means for modulating
changes to this attribute.

31

Polyinstantiation
n Suppose that a High user creates a file named

agents, when a Low user tries to create the same
file, it would fail, thus leaking information
n may be solved using naming conventions

n The problem gets more difficult in databases:
Suppose that a High user allocate classified cargo to
a ship, then a low user may think the ship is empty
and tries to allocate other cargos
n one approach is to use a cover story

The Limit of Formal Security
Models

Dorothy Denning
National Computer Systems Security

Award Acceptance Speech

33

Quoted from Denning’s
Speech
n I learned my second lesson on the limits of models in

the mid 80s while working at SRI. I was co-PI for a
project to develop a model for a multilevel-secure
database system based on views. Peter Neumann,
Teresa Lunt, Roger Schell, Bill Shockley, and Mark
Heckman were all working with me. Our model,
which we called SeaView, grew progressively more
complex as we attempted to address the real issues.
By the time I left SRI in 1987, I was convinced that I
would never want to use a system based on
SeaView.

34

Quoted from Denning’s
Speech
n Any hope of usability had been killed by a concept

called polyinstantiation, which involved instantiating
multiple data values within a single field of a record,
all with different security classifications.
Polyinstantiation was needed to satisfy the
mathematical models of multilevel security, but it got
uglier and uglier the deeper we went. I learned then
that security models could lead to dreadful systems
that nobody would ever use.

35

Quoted from Denning’s
Speech
n I left SRI in 1987 and went to Digital because I was

tired of security and disillusioned by it. I wanted to
work on user interfaces -- on ways of making
systems more usable. But security was in my blood,
and I never really gave it up. While there, I learned
my third lesson, namely that building systems based
on formal models was extraordinarily time consuming
and costly. I saw this earlier, but it was really
brought home to me at DEC.

36

Quoted from Denning’s
Speech
n From my West coast office, I tracked Digital's largest

security project -- a multi-million dollar effort on the
East coast to develop the VAX Secure Virtual System,
an A1 operating system. After years of work, the
system was scheduled to ship in 1990 and enter
formal evaluation, but in February of that year, the
project was canceled instead. The projected volume
of sales did not justify the projected costs of
continuing development and enhancement.

37

End of Lecture 9

n Next lecture
n Integrity, Biba, Clark-Wilson

