CS590U Access Control: Theory and Practice

Lecture 8 (February 3) Noninterference

Security Policies and Security Models

J.A.Goguen and J.Meseguer Oakland'1982

Distinction Between Models and Policies

- A model describes the system
 - e.g., a high level specification or an abstract machine description of what the system does
 - this paper uses a state transition systems with focus on operations and outputs
- A security policy
 - defines the security requirements for a given system
- Verification shows that a policy is satisfied by a system

Four Stages in Defining Security

- 1. Determine the security needs of a given community
- 2. Express those needs as a formal requirement
- 3. Model the system which that community is (or will be) using
- 4. Verify that systems in the model satisfies the requirement
- Maybe switch steps 2 & 3, as the formal security requirement will be based on the model; maybe an iterative process.

An Abstract System Model

- S: set of states
- U: set of subjects
- SC: set of state commands
- Out: set of all possible outputs
- do: $S \times U \times SC \rightarrow S$
 - do(s,u,c)=s' means that at state s, when u performs command c, the resulting state is s'
- out: $S \times U \rightarrow Out$
 - out(s,u) gives the output that u sees at state s
- $S_0 \in S$ initial state

The Additional Capability Component

- Capt: set of capability tables
- CC: set of capability commands
- out: $S \times Capt \times U \rightarrow Out$
- do: $S \times Capt \times U \times SC \rightarrow S$
- cdo: Capt \times U \times CC \rightarrow Capt
 - decides how the capability table is updated
- s₀,t₀: initial state and capability table

Summary of the Modeling Aspect

- The system is modeled as a state-transitional system
- Changes state by subjects executing commands
- Each state has an output for each subject
- Implicit assumptions:
 - Initial state of the system does not contain any sensitive information
 - Information comes into the system by commands
 - Only way to get information is through outputs

Security Policies

- A security policy is a set of noninterference assertions
- Definition of noninterference: Given two group of users G and G', we say G does not interfere with G' if for any sequence of commands w, what users in G' can observe after executing w is the same as what users in G can observe after executing P_G(w), which is w with command initiated by users in G removed.
- Similar in spirit to the notion of zero-knowledge in cryptography
 - if what one can see with high inputs is the same as what one sees without high inputs, no high information is leaked

Usage Examples

- Information flow within a programs
 - certain variables are noninterfering with other variables
- Safety in automated trust negotiation
 - how to say that a negotiator's behavior does not leak information about its sensitive attributes to entities not authorized to know that information

Evaluation of The Non-Interference Policy

- The policy definition is elegant and natural
 - focuses on policy objective, rather than mechanism, such as BLP
- The model is useful for some applications, but may be difficult to apply to real world systems
 - how to model a system that BLP intends to model, with files storing sensitive information?

End of Lecture 8

- Next lecture
 - Covert channel