
CS590U
Access Control: Theory and
Practice

Lecture 6 (January 27)
The Harrison-Ruzzo-Ullman Model

2

Papers That This Lecture is
Based Upon

M.A. Harrison, W.L. Ruzzo, and J.D. Ullman:
Protection in Operating Systems.
Communications of the ACM, August 1976.
M.A. Harrison and W.L. Ruzzo: Monotonic
Protection Systems. In Foundations of
Secure Computation, 1978.

3

Objectives of the HRU Work

Provide a model that is sufficiently powerful
to encode several access control approaches,
and precise enough so that security
properties can be analyzed
Introduce the “safety problem”
Show that the safety problem

is decidable in certain cases
is undecidable in general
is undecidable in monotonic case

4

Protection Systems

A protection system has
a finite set R of generic rights
a finite set C of commands

A protection system is a state-transition
system
To model a system, specify the following
constants:

set of all possible subjects
set of all possible objects
R

5

The State of A Protection
System

A set O of objects
A set S of subjects that is a subset of O
An access control matrix

one row for each subject
one column for each object
each cell contains a set of rights

6

Commands: Examples
command GRANT_read(x1,x2,y)

if `own’ in [x1,y]
then enter `read’ into [x2,y]

end

command CREATE_object(x,y)
create object y
enter `own’ into [x,y]

end

7

Syntax of a Command

A command has the form
command a(X1, X2, …, Xk)

if
r1 in (Xs1, Xo1) and … and rm in (Xsm, Xom)

then
op1 … opn

end
X1,…,Xk are formal parameters

8

Six Primitive Operations

enter r into (Xs, Xo)
Condition: Xs ∈ S and Xo ∈ O
r may already exist in (Xs, Xo)

delete r from (Xs, Xo)
Condition: Xs ∈ S and Xo ∈ O
r does not need to exist in (Xs, Xo)

9

Six Primitive Operations

create subject Xs
Condition: Xs ∉ O

create object Xo
Condition: Xo ∉ O

delete subject Xs
Condition: Xs ∈ S

delete object Xo
Condition: Xo ∈ O and Xo ∉ S

10

How Does State Transition
Work?

Given a protection system (R, C), state z1
can reach state z2 iff there is an instance of a
command in C so that all conditions are true
at state z1 and executing the primitive
operations one by one results in state z2

a command is executed as a whole (similar to a
transaction), if one step fails, then nothing
changes

11

Example

Given the following command
command α (x, y, z)

enter r1 into (x,x)
destroy subject x
enter r2 into (y,z)

end

One can never use α(s,s,o) to change a state

12

Example 4 in [HRU]:

Problem: how to Implementing Unix access
control in HRU
Difficulty: the owner of a file may specify the
privileges of all other users
Solution: the cell (f,f) determines who can
access the file f
Question: anything to say about this solution?
other solutions?

13

The Safety Problem

What do we mean by “safe”?
Definition 1: “access to resources without the
concurrence of the owner is impossible”
Definition 2: “the user should be able to tell
whether what he is about to do (give away a
right, presumably) can lead to the further leakage
of that right to truly unauthorized subjects”

14

Defining the Safety Problem
“Suppose a subject s plans to give subjects s’ generic
right r to object o. The natural question is whether
the current access matrix, with r entered into (s’,o),
is such that generic right r could subsequently be
entered somewhere new.”

15

Defining the Safety Problem
To avoid a trivial “unsafe” answer because s himself
can confer generic right r, we should in most
circumstances delete s itself from the matrix. It
might also make sense to delete from the matrix any
other “reliable” subjects who could grant r, but whom
s “trusts” will not do so.

16

Defining the Safety Problem
It is only by using the hypothetical safety test in this
manner, with “reliable” subjects deleted, that the
ability to test whether a right can be leaked has a
useful meaning in terms of whether it is safe to grant
a right to a subject.

17

Definition of the Safety
Problem in [HRU]

Given a protection system and generic right r,
we say that the initial configuration Q0 is
unsafe for r (or leaks r) if there is a
configuration Q and a command α such that

Q is reachable from Q0

α leaks r from Q

We say Q0 is safe for r if Q0 is not unsafe for
r.

18

Definition of Right Leakage in
[HRU]

We say that a command α(x1,…,xk) leaks
generic right r from Q if α, when run on Q,
can execute a primitive operation which
enters r into a cell of the access matrix which
did not previously contain r.

19

Let Us Look at the
Mathematical Problem

Given a protection system, a state of the
system, determines whether a right could be
leaked
Undecidable in the general case

20

Simulating Turing Machines
using Protection Systems

The set of generic rights include
the states and tape symbols of the Turing
machine,
and two special rights: `own’, `end’

Turing Machine instructions are mapped to
commands

21

Turing Machine

A Turing Machine is a 7-tuple
(Q,Σ, Γ,δ,q0,qaccept,qreject)

Q is the set of states
Σ is the input alphabet
Γ is the tape alphabet
δ is the transition function
q0∈Q is the start state
qaccept ∈Q is the accept state
qreject ∈Q is the reject state, qreject ≠ qaccept

22

Mapping a Tape to an Access
Matrix

The j’th cell on the tape = the subject sj

The j’th cell has symbol X ⇒ X ∈ (sj , sj)
The head is at the j’th cell and the current
state is q ⇒ q ∈(sj , sj)
The k’th cell is the last ⇒

‘end’ ∈ (sk , sk)
For 1≤j<k, `own’ ∈ (sj , sj+1)

23

Moving Left:
(q, X) -> (p, Y, left)

command CqX(s, s’)
if q in (s’, s’) and X in (s’, s’)

and `own’ in (s, s’)
then delete q from (s’, s’)

delete X from (s’, s’)
enter Y into (s’, s’)
enter p into (s, s)

end

24

Moving Right (case one):
(q, X) -> (p, Y, right)

command CqX(s, s’)
if q in (s, s) and X in (s, s)

and `own’ in (s, s’)
then delete q from (s, s)

delete X from (s, s)
enter Y into (s, s)
enter p into (s’, s’)

end

25

Moving Right (case two):
(q, X) -> (p, Y, right)

command CqX(s, s’)
if q in (s, s) and X in (s, s)

and `end’ in (s, s)
then delete q from (s, s) delete X from (s, s)

enter Y into (s, s)
create subject s’ enter `own’ into (s, s’)
enter p into (s’, s’) enter B into (s’, s’)
delete end from (s, s) enter ‘end’ into (s’, s’)

end

26

Summary

Given a Turing Machine, it can be encoded as
a protection system, so that the Turing
Machine enters the accept state iff the HRU
protection system leaks the right
corresponding to qaccept

Safety in HRU is thus undecidable.

27

Other Results

The safety question is
decidable for mono-operational
PSPACE-complete for systems without create
undecidable for biconditional monotonic protection
systems
decidable for monoconditional monotonic
protection systems

28

The Take-Grant Model

Two special rights `take’ and `grant’
The state is represented by a graph
The take rule: if x has `take’ right over z, and
z has right r over y, then x can get right r
over y
The grant rule: if z has `grant’ right over x,
and z has right r over y, then x can get right r
over y

29

The Take and the Grant Rule

The take rule: if x has `take’ right over z, and
z has right r over y, then x can get right r
over y

The grant rule: if z has `grant’ right over x,
and z has right r over y, then x can get right r
over y

30

Other Models

Schematic Protection Model
Typed Access Matrix Model

developed by Ravi Sandhu, et al.

31

End of Lecture 6

Next lecture
HRU, safety, Take-Grant examined

