Access Control: Theory and Practice

Lecture 6 (January 27)
The Harrison-Ruzzo-Ullman Model
Papers That This Lecture is Based Upon

Objectives of the HRU Work

- Provide a model that is sufficiently powerful to encode several access control approaches, and precise enough so that security properties can be analyzed
- Introduce the “safety problem”
- Show that the safety problem
 - is decidable in certain cases
 - is undecidable in general
 - is undecidable in monotonic case
Protection Systems

- A protection system has
 - a finite set R of generic rights
 - a finite set C of commands
- A protection system is a state-transition system
- To model a system, specify the following constants:
 - set of all possible subjects
 - set of all possible objects
 - R
The State of A Protection System

- A set O of objects
- A set S of subjects that is a subset of O
- An access control matrix
 - one row for each subject
 - one column for each object
 - each cell contains a set of rights
Commands: Examples

command GRANT_read(x1,x2,y)
 if `own’ in [x1,y]
 then enter `read’ into [x2,y]
end

command CREATE_object(x,y)
 create object y
 enter `own’ into [x,y]
end
A command has the form

```
command a(X_1, X_2, ..., X_k)
    if
        r_1 in (X_{s1}, X_{o1}) and ... and r_m in (X_{sm}, X_{om})
    then
        op_1 ... op_n
    end
```

- $X_1, ..., X_k$ are formal parameters
Six Primitive Operations

- enter r into (X_s, X_o)
 - Condition: $X_s \in S$ and $X_o \in O$
 - r may already exist in (X_s, X_o)

- delete r from (X_s, X_o)
 - Condition: $X_s \in S$ and $X_o \in O$
 - r does not need to exist in (X_s, X_o)
Six Primitive Operations

- create subject X_s
 - Condition: $X_s \notin O$

- create object X_o
 - Condition: $X_o \notin O$

- delete subject X_s
 - Condition: $X_s \in S$

- delete object X_o
 - Condition: $X_o \in O$ and $X_o \notin S$
How Does State Transition Work?

- Given a protection system \((R, C)\), state \(z_1\) can reach state \(z_2\) iff there is an instance of a command in \(C\) so that all conditions are true at state \(z_1\) and executing the primitive operations one by one results in state \(z_2\).

 - a command is executed as a whole (similar to a transaction), if one step fails, then nothing changes.
Example

- Given the following command
 - command $\alpha(x, y, z)$
 - enter r1 into (x,x)
 - destroy subject x
 - enter r2 into (y,z)
 - end

- One can never use $\alpha(s,s,o)$ to change a state
Example 4 in [HRU]:

- **Problem:** how to Implementing Unix access control in HRU
- **Difficulty:** the owner of a file may specify the privileges of all other users
- **Solution:** the cell \((f,f)\) determines who can access the file \(f\)
- **Question:** anything to say about this solution? other solutions?
The Safety Problem

What do we mean by “safe”?

- Definition 1: “access to resources without the concurrence of the owner is impossible”
- Definition 2: “the user should be able to tell whether what he is about to do (give away a right, presumably) can lead to the further leakage of that right to truly unauthorized subjects”
Defining the Safety Problem

“Suppose a subject s plans to give subjects s’ generic right r to object o. The natural question is whether the current access matrix, with r entered into (s’,o), is such that generic right r could subsequently be entered somewhere new.”
Defining the Safety Problem

- To avoid a trivial “unsafe” answer because s himself can confer generic right r, we should in most circumstances delete s itself from the matrix. It might also make sense to delete from the matrix any other “reliable” subjects who could grant r, but whom s “trusts” will not do so.
Defining the Safety Problem

- It is only by using the hypothetical safety test in this manner, with “reliable” subjects deleted, that the ability to test whether a right can be leaked has a useful meaning in terms of whether it is safe to grant a right to a subject.
Definition of the Safety Problem in [HRU]

- Given a protection system and generic right r, we say that the initial configuration Q_0 is unsafe for r (or leaks r) if there is a configuration Q and a command α such that
 - Q is reachable from Q_0
 - α leaks r from Q
- We say Q_0 is safe for r if Q_0 is not unsafe for r.
Definition of Right Leakage in [HRU]

- We say that a command $\alpha(x_1,\ldots,x_k)$ leaks generic right r from Q if α, when run on Q, can execute a primitive operation which enters r into a cell of the access matrix which did not previously contain r.
Let Us Look at the Mathematical Problem

- Given a protection system, a state of the system, determines whether a right could be leaked
- Undecidable in the general case
Simulating Turing Machines using Protection Systems

- The set of generic rights include
 - the states and tape symbols of the Turing machine,
 - and two special rights: `own', `end'
- Turing Machine instructions are mapped to commands
A Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:

- Q is the set of states
- Σ is the input alphabet
- Γ is the tape alphabet
- δ is the transition function
- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state, $q_{\text{reject}} \neq q_{\text{accept}}$
Mapping a Tape to an Access Matrix

- The j’th cell on the tape = the subject s_j
- The j’th cell has symbol $X \Rightarrow X \in (s_j, s_j)$
- The head is at the j’th cell and the current state is $q \Rightarrow q \in (s_j, s_j)$
- The k’th cell is the last $\Rightarrow \text{‘end’} \in (s_k, s_k)$
- For $1 \leq j < k$, ‘own’ $\in (s_j, s_{j+1})$
Moving Left:
(q, X) -> (p, Y, left)

command $C_{qX}(s, s')$
 if q in (s', s') and X in (s', s')
 and `own' in (s, s')
 then delete q from (s', s')
 delete X from (s', s')
 enter Y into (s', s')
 enter p into (s, s)
end
Moving Right (case one):
(q, X) -> (p, Y, right)

command $C_{qX}(s, s')$
 if q in (s, s) and X in (s, s) and `own' in (s, s')
 then delete q from (s, s)
 delete X from (s, s)
 enter Y into (s, s)
 enter p into (s', s')
end
Moving Right (case two):
(q, X) -> (p, Y, right)

command $C_{qX}(s, s')$

if q in (s, s) and X in (s, s) and `end' in (s, s)
then delete q from (s, s) delete X from (s, s)
enter Y into (s, s) enter Y into (s, s)
create subject s' enter `own' into (s, s')
enter p into (s', s') enter B into (s', s')
delete end from (s, s) enter `end' into (s', s')

end
Summary

- Given a Turing Machine, it can be encoded as a protection system, so that the Turing Machine enters the accept state iff the HRU protection system leaks the right corresponding to q_{accept}.
- Safety in HRU is thus undecidable.
Other Results

- The safety question is
 - decidable for mono-operational
 - PSPACE-complete for systems without create
 - undecidable for biconditional monotonic protection systems
 - decidable for monoconditional monotonic protection systems
The Take-Grant Model

- Two special rights `take’ and `grant’
- The state is represented by a graph
- The take rule: if x has `take’ right over z, and z has right r over y, then x can get right r over y
- The grant rule: if z has `grant’ right over x, and z has right r over y, then x can get right r over y
The Take and the Grant Rule

- **The take rule:** if x has `take` right over z, and z has right r over y, then x can get right r over y

- **The grant rule:** if z has `grant` right over x, and z has right r over y, then x can get right r over y
Other Models

- Schematic Protection Model
- Typed Access Matrix Model
 - developed by Ravi Sandhu, et al.
End of Lecture 6

- Next lecture
 - HRU, safety, Take-Grant examined