CS590U Access Control: Theory and Practice

Lecture 6 (January 27) The Harrison-Ruzzo-Ullman Model

Papers That This Lecture is Based Upon

- M.A. Harrison, W.L. Ruzzo, and J.D. Ullman: <u>Protection in Operating Systems</u>. *Communications of the ACM*, August 1976.
- M.A. Harrison and W.L. Ruzzo: Monotonic Protection Systems. In *Foundations of Secure Computation*, 1978.

Objectives of the HRU Work

- Provide a model that is sufficiently powerful to encode several access control approaches, and precise enough so that security properties can be analyzed
- Introduce the "safety problem"
- Show that the safety problem
 - is decidable in certain cases
 - is undecidable in general
 - is undecidable in monotonic case

Protection Systems

- A protection system has
 - a finite set *R* of generic rights
 - a finite set *C* of commands
- A protection system is a state-transition system
- To model a system, specify the following constants:
 - set of all possible subjects
 - set of all possible objects
 - *R*

The State of A Protection System

- A set *O* of objects
- A set *S* of subjects that is a subset of *O*
- An access control matrix
 - one row for each subject
 - one column for each object
 - each cell contains a set of rights

Commands: Examples

command GRANT_read(x1,x2,y)
 if `own' in [x1,y]
 then enter `read' into [x2,y]
end

```
command CREATE_object(x,y)
  create object y
  enter `own' into [x,y]
end
```

Syntax of a Command

Six Primitive Operations

- enter r into $(X_{sr} X_{o})$
 - Condition: $X_s \in S$ and $X_o \in O$
 - r may already exist in $(X_{s'}, X_{o})$
- delete r from (X_{sr}, X_{o})
 - Condition: $X_s \in S$ and $X_o \in O$
 - r does not need to exist in (X_{sr}, X_o)

Six Primitive Operations

- create subject X_s
 - Condition: $X_s \notin O$
- create object X_o
 - Condition: $X_o \notin O$
- delete subject X_s
 - Condition: $X_s \in S$
- delete object X_o
 - Condition: $X_o \in O$ and $X_o \notin S$

How Does State Transition Work?

- Given a protection system (R, C), state z₁ can reach state z₂ iff there is an instance of a command in C so that all conditions are true at state z₁ and executing the primitive operations one by one results in state z₂
 - a command is executed as a whole (similar to a transaction), if one step fails, then nothing changes

Example

- Given the following command
 - command α (x, y, z) enter r1 into (x,x) destroy subject x enter r2 into (y,z)
 - end
- One can never use α (s,s,o) to change a state

Example 4 in [HRU]:

- Problem: how to Implementing Unix access control in HRU
- Difficulty: the owner of a file may specify the privileges of all other users
- Solution: the cell (f,f) determines who can access the file f
- Question: anything to say about this solution? other solutions?

The Safety Problem

- What do we mean by "safe"?
 - Definition 1: "access to resources without the concurrence of the owner is impossible"
 - Definition 2: "the user should be able to tell whether what he is about to do (give away a right, presumably) can lead to the further leakage of that right to truly unauthorized subjects"

Defining the Safety Problem

Suppose a subject s plans to give subjects s' generic right r to object o. The natural question is whether the current access matrix, with r entered into (s',o), is such that generic right r could subsequently be entered somewhere new."

Defining the Safety Problem

To avoid a trivial "unsafe" answer because s himself can confer generic right r, we should in most circumstances delete s itself from the matrix. It might also make sense to delete from the matrix any other "reliable" subjects who could grant r, but whom s "trusts" will not do so.

Defining the Safety Problem

 It is only by using the hypothetical safety test in this manner, with "reliable" subjects deleted, that the ability to test whether a right can be leaked has a useful meaning in terms of whether it is safe to grant a right to a subject.

Definition of the Safety Problem in [HRU]

- Given a protection system and generic right r, we say that the initial configuration Q₀ is unsafe for r (or leaks r) if there is a configuration Q and a command α such that
 - Q is reachable from Q₀
 - α leaks r from Q
- We say Q₀ is safe for r if Q₀ is not unsafe for r.

Definition of Right Leakage in [HRU]

We say that a command α(x1,...,xk) leaks generic right r from Q if α, when run on Q, can execute a primitive operation which enters r into a cell of the access matrix which did not previously contain r. Let Us Look at the Mathematical Problem

- Given a protection system, a state of the system, determines whether a right could be leaked
- Undecidable in the general case

Simulating Turing Machines using Protection Systems

- The set of generic rights include
 - the states and tape symbols of the Turing machine,
 - and two special rights: `own', `end'
- Turing Machine instructions are mapped to commands

Turing Machine

- A Turing Machine is a 7-tuple (Q,Σ, Γ,δ,q₀,q_{accept},q_{reject})
 - Q is the set of states
 - Σ is the input alphabet
 - Γ is the tape alphabet
 - δ is the transition function
 - q₀∈Q is the start state
 - $q_{accept} \in Q$ is the accept state
 - $q_{reject} \in Q$ is the reject state, $q_{reject} \neq q_{accept}$

Mapping a Tape to an Access Matrix

- The j'th cell on the tape = the subject s_i
- The j'th cell has symbol $X \Rightarrow X \in (s_j, s_j)$
- The head is at the j'th cell and the current state is q $\Rightarrow q \in (s_j, s_j)$
- The k'th cell is the last \Rightarrow

 $end' \in (s_k, s_k)$

For $1 \le j < k$, `own' \in (s_j, s_{j+1})

Moving Left: (q, X) -> (p, Y, left)

> command $C_{qX}(s, s')$ if q in (s', s') and X in (s', s') and `own' in (s, s') then delete q from (s', s') delete X from (s', s') enter Y into (s', s') enter p into (s, s)

end

Moving Right (case one): (q, X) -> (p, Y, right)

command $C_{qX}(s, s')$ if q in (s, s) and X in (s, s) and `own' in (s, s') then delete q from (s, s) delete X from (s, s) enter Y into (s, s) enter p into (s', s')

end

Moving Right (case two): (q, X) -> (p, Y, right)

command $C_{qX}(s, s')$ if q in (s, s) and X in (s, s) and `end' in (s, s) then delete q from (s, s) delete X from (s, s)enter Y into (s, s) create subject s' enter p into (s', s') enter B into (s', s')delete end from (s, s)

enter `own' into (s, s') enter 'end' into (s', s')

end

Summary

- Given a Turing Machine, it can be encoded as a protection system, so that the Turing Machine enters the accept state iff the HRU protection system leaks the right corresponding to q_{accept}
- Safety in HRU is thus undecidable.

Other Results

- The safety question is
 - decidable for mono-operational
 - PSPACE-complete for systems without create
 - undecidable for biconditional monotonic protection systems
 - decidable for monoconditional monotonic protection systems

The Take-Grant Model

- Two special rights `take' and `grant'
- The state is represented by a graph
- The take rule: if x has `take' right over z, and z has right r over y, then x can get right r over y
- The grant rule: if z has `grant' right over x, and z has right r over y, then x can get right r over y

The Take and the Grant Rule

- The take rule: if x has `take' right over z, and z has right r over y, then x can get right r over y
- The grant rule: if z has `grant' right over x, and z has right r over y, then x can get right r over y

Other Models

- Schematic Protection Model
- Typed Access Matrix Model
 - developed by Ravi Sandhu, et al.

End of Lecture 6

- Next lecture
 - HRU, safety, Take-Grant examined