
CS590U
Access Control: Theory
and Practice

Lecture 3 (Jan 18)
State Transition Systems & The

Graham-Denning Schemes

Announcements

Mailing list
CS590U_Spring2005@cs.purdue.edu
To join: send email to mailer@cs.purdue.edu

with the following in the email body
add your_email to CS590U_Spring2005

You should have received a note from the mailing
list

HW1 due today
Project pre-proposal due on Thursday

The Need For A Formal Model
of The System

Need to describe the things we want to study
and analyze the security properties of them

analyzing security properties
comparing expressive powers

What systems to model?
computer systems
protection systems

How to model a system?

Example

A coffee vending machine that accepts nickle,
dime, quarter and gives out one coffer (cost
10 cents) and changes
Goal: show that a design (or an
implementation) satisfies various properties,
e.g.,

never gives a coffee for less than 10 cents
never takes more money from a user
never frustrates a user (whatever that means)

Kripke Structures

Let AP be a set of atomic propositions. A
Kripke structure M over AP is a four-tuple

S is finite set of states
S0 ⊆ S is the set of initial states
R ⊆ S × S is a transition relation
L: S → 2AP is a function that labels each state with
the set of atomic propositions true in that state

Often times, R is required to be total
∀s ∃s’ (s,s’)∈R

Usage of Kripke Structures
Given a Kripke structure 〈S,S0,R,L 〉, a path is
an infinite sequence s0,s1,… of states such
that s0∈S0 and (si,si+1)∈R
Verifying properties

A property may be specified in a temporal logical
formula on paths and propositional variables on
each state

Showing that two Kripke structure are
equivalent under some definition of
“equivalence”

Questions to Think?

How to use Kripke structure to model the
coffee vending machine?
Is the Kripke structure sufficient (or
convenient) for modelling the coffee vending
machine?

Coffee Machine:
Let AP={coffee, change}

S: {0, 5, 10, 15, 25, 30}
S0: {0}
R: (0,0), (0,5), (0,10), (0,25), (5,10), (5,15), (10,0), (15,0),
(25,0), (30,0)
L:

0: coffee is false, change is 0
5: coffee is false, change is 0
10: coffee is true, change is 0
15: coffee is true, change is 5
20: coffee is true, change is 10 …

Issues in Modelling

Granularity of state transitions
too coarse (may miss problems)
too fine-grained (may find false problems)

Modeling Reactive Systems

A system changes states as a result of
external actions
These results may cause certain outputs

e.g., “yes, access is allowed”, “no, access is
denied”, etc.

Need to model external actions & outputs

Labelled State Transition
Systems

Each state-transition is labeled with a label
intuition: an action

Not entirely clear about how to model an
output.

one possibility: as another action
Security properties will need to be specified
using information on labels and outputs
May need a new theory (or at least)
substantial extensions to existing theory

The Access Matrix Model

History

Lampson’1971
“Protection”

Refined by Graham and Denning’1972
“Protection---Principles and Practice”

Harrison, Ruzzo, and Ullman’1976
“Protection in Operating Systems”

Access Matrix

A set of subjects S
A set of objects O
A set of rights R
An access control matrix

one row for each subject
one column for each subject/object
elements are right of subject on another subject
or object

The Graham-Denning Work

Based on access matrices
Focuses on access control within an operating
system
Explores various possibilities of discretionary
access control

Seven Levels of Protection /
Separation
1. No sharing at all
2. Sharing copies of programs or data files
3. Sharing originals of programs or data files
4. Sharing programming systems or subsystems
5. Permitting the cooperation of mutually suspicious

subsystems, e.g., debugging or proprietary
subsystems

6. Providing memory-less subsystems
7. Providing “certified” subsystems

Elements in Graham-Denning
Objects: have unique identifier
Subjects

a subject is a pair (process, domain)
forging a subject identifier is impossible (authentication)

Protection state
modeled using an access matrix (can also be represented as
a graph)

No modeling of actual accesses (only access
permissions)

whether this is sufficient depends on the properties to be
studied

Special Rights in Graham-
Denning Model

Each subject/object has an owner
Each subject has a controller (which may be itself)
A right may be transferable or nontransferable

Eight Commands in Graham-
Denning Model

1. subject x creates object o
no precondition
add column for o
place `owner’ in A[x,o]

2. subject x creates subject s
no precondition
add row and column for s
place control, `owner’ in A[x,s]

Eight Commands in Graham-
Denning Model

3. subject x destroys object o
precondition: `owner’ in A[x,o]
delete column o

4. subject x destroys subject s
precondition: `owner’ in A[x,s]
delete row and column for s

Eight Commands in Graham-
Denning Model

5. subject x grants a right r/r* on object o to
subject s

precondition: `owner’ in A[x,o]
stores r/r* in A[s,o]

6. subject x transfers a right r/r* on object o
to subject s

precondition: r* in A[x,o]
stores r/r* in A[s,o]

Eight Commands in Graham-
Denning Model

7. subject x deletes right r/r* on object o from
subject s

precondition: `control’ in A[x,s] or `owner’ in
A[x,o]
delete r/r* from A[s,o]

Eight Commands in Graham-
Denning Model

8. subject x checks what rights subject s has
on object o [w := read s,o]

precondition: `control’ in A[x,s] OR `owner’ in
A[x,o]
copy A[s,o] to w

This does not affect the protection state.
policy review functions
useful when analyzing external behaviors of the
protection system, not clear why needed in this
paper

Messy Details

Some requirements place additional
constraints on state-transitions

Each subject is owner or controlled by at most one
other subject

cannot transfer/grant owner right
It is undesirable for a subject to be `owner’ of
itself, for then it can delete other subjects’ access
to itself
[The relation “owner” defines naturally a tree
hierarchy on subjects.]

What does it take to maintain the hierarchy?

Other possible extensions

Transfer-only copy flags
Limited-use access attributes

needs to model access
Allow a subject to obtain a right that its
subordinate has.
The notion of “indirect” right

S2 has indirect right over S means that S2 can
access anything that S is allowed to access, but S2
cann’t take right from S
differs from basic notion of an access matrix

How to Analyze Security
Properties?

“To prove that a protection model, or an
implementation of it, is correct, one must
show that a subject can never access an
object except in an unauthorized manner”

any action by a subject cannot be an authorized
access
any action that changes the protection state
cannot lead to a new state in which some subject
has unauthorized access

Issues of Trust

Trusted vs. trustworthy
minimize trusted things
maximize trustworthy things

A subject who has read* to an object can
grant read to anyone

such a subject often needs to be trusted
similar issue: multiple owners of an object

Someone having read access to an object can
make copies of the object: read = read*

Approaches to the Trust Issue

Trust human users, but not subjects
Enable the analysis and understanding of
trust

for a particular security property, who are trusted?
example: simple safety analysis [(o,r)-safety]

whether in a future state, a particular subject can
get access to a particular object

Simple Safety Analysis in Graham-
Denning

Implementation Issues

Storing the access matrix
by rows: capability lists
by column: access control lists
through indirection:

e.g., key and lock list
e.g., groups, roles, multiple level of indirections,
multiple locks

How to do indirection correctly and
conveniently is the key to management of
access control.

An Open Problem

There are many possibilities in the Graham-
Denning approach to Discretionary Access
Control
How to abstract a scheme out of these
possibilities so that

each possibility is an individual instance
properties of the scheme can be analyzed

The Bell-LaPadula Model of
Computer Systems

Basic elements:
subjects S
objects O
security labels a partially-ordered set 〈L, ≤〉
access rights:

e execute (no read/no write)
r read (read only)
a append (write only)
w write (read/write)

The Bell-LaPadula Model of
Computer Systems

A system state is denoted by a triple
b: the current access set, a set of triples (subject,
object, access-attribute)
M: an access matrix
label functions

fS: S→L subject labels
fO: O→L object labels
fC: S →L current subject labels

object hierarchies are omitted

The Bell-LaPadula Model of
Computer Systems

Systems change states by handling requests
get/release access (change b)
change object level, current subject level (fO,fC)
give/rescind access permissions (M)

Decisions to requests are
yes, no

End of Lecture 3

Next lecture:
Partial orders, lattices, and security labels

