CS590U
Access Control: Theory and Practice

Lecture 1 (Jan 11)
Introduction to the Course
Instructor Info

- Ninghui Li
 - Email: ninghui@cs.purdue.edu
 - Office phone: 765-496-6756
 - Office: REC 217C

- Office hour
 - Tuesday 4:20pm to 5:20pm
 - Thursday 4:20pm to 5:20pm
Coursework

- Lectures & participations (10%)
- Readings
 - before each lecture
- Eight assignments (40%)
 - problems
 - review of assigned papers
Coursework

- A course project (individual)
 - Pre-proposal: Jan 20
 - Proposal: Feb 8 (10%)
 - Presentation: Apr 19 to 28 (10%)
 - Final report: Apr 30 (Sat) (30%)
Pre-proposal (Due Jan 20)
Submit paper copy before class

- List 1 to 3 project topics you find interesting
 - Why these topics interest you?
 - What are your plans?
 - What related backgrounds do you have?

- Propose new project ideas
 - Background, problem, plan, references …
Check the course homepage
Why a Course on Access Control?
What is Access Control?

- Quote from Security Engineering by Ross Anderson
 - Its function is to control which principals (persons, processes, machines, …) have access to which resources in the system --- which files they can read, which programs they can execute, and how they share data with other principals, and so on.
Access Control is Pervasive

- Application
 - business applications

- Middleware
 - DBMS

- Operating System
 - controlling access to files, ports

- Hardware
 - memory protection, privilege levels
Access Control is Important

- Quote from Security Engineering
 - Access control is the traditional center of gravity of computer security. It is where security engineering meets computer science.

- TCSEC evaluates security of computer systems based on access control features + assurance
Access Control is Interesting

- Has (relatively) well-developed theories
 - 30+ years history
 - some (quite involved) theory (apparently) not useful for other fields
- Many interesting and deep results
- Many misconceptions and debates
- A large percentage of published works contain serious errors
 - Corollary: Be skeptical, don’t believe too much what others have said, try form your own opinions
Access Matrix

- A set of subjects \(S \)
- A set of objects \(O \)
- A set of rights \(R \)
- An access control matrix
 - one row for each subject
 - one column for each subject/object
 - elements are right of subject on another subject or object
An Incomplete History of Access Control Research
Earlier Years: Time-Sharing Operating Systems

- Reference monitors (1972)
- Access matrix (1971)
- Discretionary access control
 - trojan horse can leak information
- Access control list
- Capabilities
- Multics
Military Wants Confidentiality

- Mandatory access control
- Label-based access control
- Bell-LaPadula (1973+)
- Covert channel
- Verifying security
- Security kernels
- TCSEC (1983)
Safety Properties

- The HRU undecidability result (1976)
- The Take-Grant scheme (1977)
- Grammatical systems
- Schematic Protection Model (1985)
- Typed Access Matrix (1992)

Security Analysis
- in Trust Management
- in Role-Based Access Control
- in Discretionary Access Control
What About Integrity?

- Biba integrity model
- High watermark/low watermark
- Clark-Wilson
- Chinese Wall
- Domain-Type enforcement
Information Flow Problems

- Noninterference (1982)
- Nondeducibility (1986)
- Composing security
- Information flow in programs
 - Denning’s work
 - Language-based security
Database Access Control

- System R approach: grant/revoke, view
- Ingres approach (query rewriting)
- Multilevel databases
- Object/relational databases
- Real systems
 - SQL grant/revoke, view, stored procedures, fine-grained access control
- Privacy centric
Role-Based Access Control

- In database context [1990]
- Generic access control approach [1992]
- Constraints
- Administration
- Relationships with DAC and MACs
- Extensions
Access Control in Distributed Systems

- ABLP Logic
- Trust management
 - PolicyMaker, KeyNote, QCM/SD3,
 Delegation Logic, Binder, RT
- Automated trust negotiation
Other Topics

- Java
- Operating system wrappers
- XML access control
- Workflow systems
- Computer Supported Collaborative Work
- Firewall
- Cryptographic approach
Why is Access Control Complex?
Objects are often complex

- Objects may be structured:
 - directories/files
 - database, table, row, column, view
 - XML documents

- Identifying objects may be hard
Subjects are complex

- What are subjects?
 - human users
 - principals (e.g., accounts, public keys)
 - processes

- What are the relationships among subjects?
 - whose authority to use?

- On what basis does one grant access?
Systems may be large

- Number of subjects may be hundreds of thousands
Access Control States May Change

- Who can make changes?
- What kinds of changes can be made?
- Often not clearly specified
 - lead to many many misconceptions in access control
Security Objectives Often Unclear

- What properties do we want an access control system to have?
 - allow legitimate sharing, forbid illegitimate sharing
 - what sharings are legitimate?

- The criteria of goodness is often unclear.
Very Limited Understanding of Usability Issues

- Not much thought has been put into usability issues.
- Not clear what can/should be done.
MisConceptions that

- MisConceptions that we are fighting
 - Safety analysis is hard
 - RBAC is more expressive than DAC

- Debates
 - Bell-LaPadula vs. System Z
 - Capability vs. ACL
Grand Challenges in Access Control

- Operating system access control
 - Unix is bad, Windows seems worse, SELinux is unusable, is there any hope?

- Enterprise security management
 - RBAC is useful but limited, what is the next RBAC?

- A uniform approach to database access control

- A unified theory/methodology that can be fruitfully applied most of the times

- Meaningful verification techniques

- Usability theory/facts/guidelines
End of Lecture 1

- Next lecture:
 - my funded research projects
 - project topics