A Note on Order and Lattices

January 15, 2005

In this note, when we say a relation R, we mean a binary relation over a certain non-empty set X, i.e., $R \subseteq X \times X$. When $\langle x, y \rangle \in R$, we also write R(x, y); when $\langle x, y \rangle \notin R$, we also write $\neg R(x, y)$. We use \rightarrow to denote logical implication and \leftrightarrow to denote logical equivalence.

- **Definition.** A relation R is transitive if $\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z))$.
- **Definition.** A relation R is **reflexive** if $\forall x R(x, x)$.
- **Definition.** A relation R is irreflexive if $\forall x(\neg R(x, x))$.
- Exercise. Give a relation that is neither reflexive nor irreflexive.
- **Definition.** A relation R is symmetrical if $\forall x \forall y (R(x, y) \leftrightarrow R(y, x))$.
- **Definition.** A relation R is asymmetrical if $\forall x \forall y (R(x, y) \rightarrow \neg R(y, x))$.
- **Definition.** A relation R is anti-symmetrical if $\forall x \forall y (R(x, y) \land R(y, x) \rightarrow x = y)$.
- **Classroom Exercise.** Prove that an asymmetrical relation is irreflexive.
- **Classroom Exercise.** Draw the relationship of the symmetrical relation, asymmetrical, anti-symmetrical relations. Use a big circle for all relations, and three small circles inside the big one to denote the three kinds of relations.
- Exercise. Give an example for each of the case in the graph.
- Definition. A strict partial order is irreflexive, transitive, and asymmetrical.

Ex1: the less than relation (<) over any subset of real numbers.

- Ex2: the subset relation (\subset) over a set of sets, e.g., the powerset of a fixed set.
- Definition. A partial order is reflexive, transitive, and anti-symmetric.

Ex1: the less than and equal to relation over any subset of real numbers.

Ex2: the \subseteq relation over a set of sets, e.g., the powerset of a fixed set.

- **Fact.** If R is a partial ordering of a set X, then $R \{\langle x, x \rangle : x \in X\}$ is a strict partial ordering of X.
- **Definition.** A relation R is a strict total order if it is a strict partial order and $\forall xy (x \neq y \rightarrow (R(x, y) \lor R(y, x)))$.

Definition. A relation R is a **total order** if it is a partial order and $\forall xy(R(x,y) \lor R(y,x))$.

- Notation. We often use \leq to denote a partial order R. When $(x, y) \in R$, we write $x \leq y$ or $y \geq x$. Note that while \leq is often used to denote the numerical less than or equal to relation over numbers, we use \leq to denote other partial orders as well.
- **Definition.** A poset (partially ordered set) $\langle X, \leq \rangle$ is a set X with a partial ordering \leq .
- **Definition.** Given a poset $\langle X, \leq \rangle$, and $x_1, x_2, y \in X$, y is an **upper bound** of x_1, x_2 if $x_1 \leq y$ and $x_2 \leq y$; y is the **least upper bound (lub)** of x_1, x_2 if y is an upper bound of x_1, x_2 and for every z that is an upper bound of $x_1, x_2, y \leq z$. The lub of x_1, x_2 is often denoted $x_1 \vee x_2$, and is also known as the **join** of x_1, x_1 and the **supremum (sup)** of x_1, x_2 . (Note that we overload \vee to denote both logical or and the join operator; its meaning should be clear from context.)
- Exercise. Give an example poset such that two elements in it have upper bounds, but no least upper bound.
- **Exercise.** Prove that $x_1 \vee x_2$, if exists, is unique.
- **Definition.** A upper semilattice is a poset $\langle X, \leq \rangle$ such that for every $x_1, x_2 \in X, x_1 \vee x_2$ exists.
- **Exercise.** Given a poset $\langle X, \leq \rangle$, one can extend naturally the definition of upper bound and least upper bound (i.e. join, supremum, sup) to any subset of X.

Prove that in an upper semilattice $\langle X, \leq \rangle$, for every *finite* non-empty subset X' of X, the sup of X' uniquely exists. **Hint: Use induction.**

Definition. Given a poset $\langle X, \leq \rangle$, and $x_1, x_2, y \in X$, y is a **lower bound** of x_1, x_2 if $x_1 \geq y$ and $x_2 \geq y$; y is the **greatest lower bound (glb)** of x_1, x_2 if y is an lower bound of x_1, x_2 and for every z that is a lower bound of $x_1, x_2, y \geq z$. The glp of x_1, x_2 is often denoted $x_1 \wedge x_2$, and is also known as the **meet** of x_1, x_1 and the infimum (inf) of x_1, x_2 .

Given $x_1, x_2 \in X$, $x_1 \wedge x_2$ may not exist; but is unique if exists.

- **Definition.** A lower semilattice is a poset $\langle X, \leq \rangle$ such that for every $x_1, x_2 \in X, x_1 \wedge x_2$ exists.
- **Definition.** A lattice is a poset $\langle X, \leq \rangle$ that is both an upper semilattice and a lower semilattice.

Exercise. Given a lattice $\langle X, \leq \rangle$ and $x_0 \in X$. Let $X' = \{x \in X \mid x \geq x_0\}$. Prove that $\langle X', \leq \rangle$ is a lattice.

Definition. A complete upper (resp. lower) semilattice is an upper (resp. lower) semilattice $\langle X, \leq \rangle$ where every sub X' of X (not just finite ones) has a sup (resp. inf). We write these subs and infs as $\bigvee X'$ and $\bigwedge X'$.

A complete lattice is poset $\langle X, \leq \rangle$ that is both a complete upper semilattice and a complete lower semilattice.

- Fact. A finite lattice is a complete lattice.
- Notation. Given a complete lattice $\langle X, \leq \rangle$, we use 1 (or \top) to denote the element $\bigvee X$ and 0 (or \perp) to denote the element $\bigwedge X$.
- **Definition.** A monotone function from a poset $\langle A, \leq_X \rangle$ to a poset $\langle B, \leq_B \rangle$ is a function $f : A \longrightarrow B$ such that $\forall xy(x \leq_A y \rightarrow f(x) \leq_B f(y))$.

Theorem. (*Tarski-Knaster Theorem*) Let $\langle X, \leq \rangle$ be a complete lattice and $f : X \longrightarrow X$ be a monotone function. Then f has a fixed point, i.e., there exists $x \in X$ such that f(x) = x.

Proof: Let $A = \{x \in X \mid f(x) \leq x\}$. A is nonempty because $\bigvee X \in A$. Let $a = \bigwedge A$. For every $x \in A$, we know that $f(x) \leq x$. As $a \leq x$ and f is monotone, $f(a) \leq f(x)$. By transitivity, $f(a) \leq x$. Therefore, f(a) is also a lower bound of A. Because a is the greatest lower bound of A, $f(a) \leq a$. Therefore, $a \in A$. Furthermore, by monotonicity, $f(f(a)) \leq f(a)$; thus $f(a) \in A$. As $a = \bigwedge A, a \leq f(a)$. Therefore a = f(a).

Classroom Exercise. Show that the fixpoint constructed in the proof above is the least fixpoint of f.