
Access Control
by Query Modification

TruSec Seminar
November 3, 2004
Ji-Won Byun

Outline

l Access Control in a RDBMS by Query Modification
- Michael Stonebraker and Eugene Wong, ACM CSC-ER, 1974

l Oracle VPD
- Oracle Technical White Paper, 2002

l Extending Query Rewriting Techniques
- Rizvi et al., SIGMOD, 2004

Query Modification

l Basic idea
– a user interaction with the database is modified to an

alternate form which is guaranteed to have no access
violations.

– The modification takes place in a high level interaction
language so that the processing of a resulting
interaction can be accomplished without further regard
for protection.

– No controls on access paths to data need to be present.

Query Modification-Examples

l QUEL (Query Language)

– RANGE relation-name (symbol, …, symbol):…
RETRIEVE workspace-name:target-list:qualification

- In SQL, RANGE = From
target-list = Select
qualification = Where

Query Modification-Examples

l Suppose the following tables exist.
employee (name, dept, salary, manager)
department (dept, floor#, #emp, sales)

ex) Find the employees who work on the first floor
RANGE employee(X):department(Y)
RETRIEVE W:X.name:(X.dept=Y.dept) and (Y.floor#=1)

Query Modification-Examples

l Suppose that Smith can see only information on
himself.
RANGE employee(X)
RETRIEVE W1:X.name, X.dept, X.salary:X.name=Smith

l Smith wants to find out the salary of Jones
RANGE employee(X)
RETRIEVE W:X.salary:X.name=Jones

è RANGE employee(X)
RETRIEVE W:X.salary:X.name=Jones and X.name=Smith

Query Modification-Algorithm

l For each user U, a set of access control
interactions, I = {I1, …, Ik} is stored.

l Each Ij is logically of the form
RANGE relation-name (symbol, …, symbol):…
RETRIEVE target-list:qualification

l Special keywords: “ALL” and “NO ACCESS”

Query Modification-Algorithm

l For each tuple variable X, appearing in a given user
interaction R, the following algorithm is executed.

1. If the relation which X references is a workspace, then exit.
2. Find all attributes in the target list or the unmodified

qualification statement of R referenced with X. Call this set S.
3. Find all access control interactions with the same command as R

and with a target list containing all attributes in S. Denote
these by IR = {I1, …, Ij} and their qualifications by Q1, …, Qj.

4. Delete from IR all interactions with a target list containing the
target list of another interaction

5. Replace Q, the qualification in R, by Q and (Q1 and … Qj).

Query Modification-Example

l Jones can see all salaries as long as his query does not
include name or department in the target list or
qualification. Moreover, except for employee Baker, he can
see names, managers if salary is not present. Furthermore,
he can see names, managers and salaries for all employees
who earn more than their managers. Lastly, he can se all
attributes for departments which sell more than the
average department.

è RANGE employee(X, Y):department(Z)
1. RETRIEVE X.salary, X.manager
2. RETRIEVE X.name, X.dept, X.manager: X.name!=Baker
3. RETRIEVE X.name, X.salary, X.manager:

Y.name=X.manager and X.salary>Y.salary
4. RETRIEVE ALL:Z.sales>AVE(Z.sales)

Query Modification-Example

l Jones issues a query to find all salaries
RANGE employee(X)
RETRIEVE W:X.salary

è S = {salary}
1. RETRIEVE X.salary, X.manager
2. RETRIEVE X.name, X.dept, X.manager: X.name!=Baker
3. RETRIEVE X.name, X.salary, X.manager:

Y.name=X.manager and X.salary>Y.salary
4. RETRIEVE ALL:Z.sales>AVE(Z.sales)

è Since the target list of 3) contains the target list of 1),
by the step 4, only 1) is applied.

è No change

Query Modification-Example

l Jones issues a query to find the manager of Adam
RANGE employee(X)
RETRIEVE W:X.manager:X.name=Adam

è S = {name, manager}
1. RETRIEVE X.salary, X.manager
2. RETRIEVE X.name, X.dept, X.manager: X.name!=Baker
3. RETRIEVE X.name, X.salary, X.manager:

Y.name=X.manager and X.salary>Y.salary
4. RETRIEVE ALL:Z.sales>AVE(Z.sales)

è RANGE employee(X, Y)
RETRIEVE W:X.manager:X.name=Adam and X.name!=Baker

and Y.name=X.manager and X.salary>Y.salary

Query Modification-Aggregates

l What about aggregate functions?
– Suppose Adam can retrieve only salaries for employees in

the toy department.
è RANGE employee(X)

RETREIVE X.salary:X.department=Toy

– Adam issues a query to find the average salary of the
company.
RANGE employee(X)
RETREIVE W:AVE(X.salary)

Query Modification-Aggregates

l Four possibilities
1. Allow aggregates without restriction
2. Allow aggregates without restriction if the

minimum number of values aggregated exceeds
some threshold

3. Allow aggregates without restriction if they
are unqualified (e.g. are aggregates over a
whole relation)

4. Allow aggregates only with access control
qualifications appended inside the function

Query Modification-Aggregates

1. Allow aggregates without restriction

To find Smith’s salary:

RANGE employee(X)
RETRIEVE W:AVE(X.salary):X.name=Smith

Query Modification-Aggregates

2. Allow aggregates without restriction if the minimum number
of values aggregated exceeds some threshold

To find Smith’s salary:

RANGE employee(X)
RETRIEVE W:COUNT(X.name):X.name>=Smith (R1)
RETRIEVE W:AVE(X.salary):X.name>=Smith (R2)
RETRIEVE W:AVE(X.salary):X.name>Smith (R3)

è Smith’s salary = R1 X R2 – [(R1 – 1) X R3]

Query Modification-Aggregates

3. Allow aggregates without restriction if they are unqualified
(e.g. are aggregates over a whole relation)

4. Allow aggregates only with access control qualifications
appended inside the function

l 3) and 4) do not allow any potential violation.
l But some anomaly arises.

Query Modification-Aggregates

l Suppose Adam is allowed to see only tuples of
those employees in the toy department.

l Adam issues the following queries:
RANGE employee(X)
RETRIEVE W:AVE(X.salary) (R1)
RETRIEVE W:AVE(X.salary):X.name>AAAAA (R2)

l R1 contains the average salary of the company,
but R2 contains the average salary of the toy
department.

l The price paid for the increased flexibility.

Oracle VPD

l The Virtual Private Database (VPD) is the
aggregation of server-enforced, fine-grained
access control, together with a secure application
context in the Oracle database.

l By dynamically appending SQL statements with a
predicate, VPD limits access to data at row level
and ties the security policy to the table (or view
or synonym) itself.

Oracle VPD

l How does it work?
When users access a table (or view) that has a security
policy,

1. The Oracle server calls the policy function, which
returns a predicate.

2. Oracle then dynamically rewrites the query by appending
the predicate to the user’s SQL statement.

3. The modified SQL query is executed.

Oracle VPD

l Suppose we have the following table.
my_table(data varchar2(30),

owner varchar2(30) default USER);

l We want to allow users to access only the data
they own. But Admin can access any data without
restrictions.

Oracle VPD-Example

1. Create a policy function

Create function sec_function(p_schema varchar2, p_obj varchar2)
Return varchar2
As
Begin

if (USER = ‘ADMIN’) then
return ‘ ’; // same as returning ‘true’

else
return ‘owner = USER’;

end if;
End;

Oracle VPD-Example

2. Attach the policy function to my_table

Begin
dbms_rls.add_policy
(object_schema => ‘RLS’,

object_name => ‘MY_TABLE’,
policy_name => ‘MY_POLICY’,
function_schema => ‘RLS’,
policy_function => ‘SEC_FUNCTION’,
statement_types => ‘select, insert, update, delete’,
update_check => TRUE);

End;

Oracle VPD-Example

3. Use my_table

connect rls/password

select * from my_table;
= only shows the rows that owner is ‘rls’

insert into my_table(data) values(‘Some data’); OK!
insert into my_table values(‘Other data’, ‘Scott’); NOT OK!

= because of the check option.

Oracle VPD-Application Context

l Application contexts act as secure caches of data that may
be applied to a fine-grained access control policy.

– Upon logging into the database, Oracle sets up an application
context in the user’s section.

– You can define, set and access application attributes that you
can use as a secure data cache.

Oracle VPD-Application Context

l Steps
1. Create a PL/SQL package that sets the context

Create package App_sec_context IS
procedure Set_cust_num IS

cusnum number;
begin

select cus_no into cusnum from customer
where cust_name = SYS_CONTEXT(‘USERENV’, ‘SESSION_USER’);
DBMS_SESSION.SET_CONTEXT(‘order_entry’, ‘cust_num’, cusnum);

end;
End;

Oracle VPD-Application Context

l Steps
2. Create a context and associate it with the package
Create Context order_entry Using App_sec_context;
: order_entry is the context namespace, and App_sec_context is the
package that sets the attributes in the context namespace.

3. Set the context before users retrieve data
Use an event trigger on login to pull session information into the context.

4. Use the context in a VPD function
return ‘cust_num = SYS_CONTEXT(‘’order_entry’’, ‘’cust_num’’)’;

Extending Query Rewriting Techniques

l Goal
– To provide a security model in which fine-grained

authorization policies are defined and enforced in the
database level.

– Queries should be authorization-transparent. That is,
queries should be written against the database relations
without having to refer to the authorization views.

– Why? Since different users may have different
authorization views, this would require application
programmers to code interfaces differently for each
user.

Extending Query Rewriting Techniques

l Mechanism: Authorization Views
– Access control is specified using authorization views.
– Traditional views or Parameterized views
– A parameterized view is like a normal view, but with

parameters like user-id, time and user-location appearing
in its definition.

– Can also be aggregate views.
– Ex. Create Authorization View MyGrades As

Select * From Grades Where student-id = $user-id;

Authorization Models

l Truman Model (Oracle VPD)
– Provide each user with a personal and

restricted view of the complete database.
– User queries are modified transparently to

make sure the user does not get to see
anything more than her view of database.

– The returned result is correct with respect to
the restricted view.

Authorization Models

l A major drawback of Truman Model
– Inconsistencies between what the user expects to see

and what the system returns.
l Example

Create Authorization View MyGrades As
Select * From Grades Where student-id = $user-id;

User Query: Select avg(grade) From Grades;
Modified Query: Select avg(grade) From MyGrades;

è The result will be the average of her own grades.

Authorization Models

l Another example
A user runs a query to find all students who have higher
grades than the user.

Select student-id
From Grades, (Select avg(grade) as gr From Grades) A
Where grade > A.gr;
è The result will return nothing.

l User queries should be executed without any
modification or rejected outright.

Authorization Models

l Non-Truman Model
– The query is subjected to a validity test.
– If failed, the query is rejected and the user is notified

about this.
– If succeeded, the query is allowed to executed normally,

without any modification.
– The DBA creates several authorization views, one for

each access policy, and grant them to users. Any of these
views can testify for the validity of the user’s query.

Authorization Models

l Non-Truman Model

User
Validity
Checker Relations

Authorization
Views

Query Query

Query Result

Y/NReject

Authorization Models

l What is a valid query?
1. Unconditional Validity: a query Q is said to be

unconditionally valid if there is a query Q’ that is written
using only the authorization views, and is equivalent to Q,
that is, Q’ produces the same result as Q on all database
states.

Ex. Select avg(grade) From Grades
Where student-id = 11;
à Provided that user-id = 11, this query is unconditionally

valid.

Authorization Models

l What is a valid query?
2. Conditional Validity: a query Q is said to be conditionally

valid in a database state D, if there is a query Q’ that is
written using only the authorization views, and is
equivalent to Q on all database states that are PA-
equivalent to D.

Ex. Suppose average grades of courses that had more than
10 student enrolled are allowed to be accessed.
Select ave(grade) from Grades where course-id = 101;

è The validity depends on the database state.

Authorization Models

l Testing for Validity
– Use Inference Rules
– Lots of work done for optimization
– We will not discuss it here

Access Control by Query Modification

Question?

