Access Control Features in Oracle

CS 590U
April 7, 2005
Ji-Won Byun

Access Control Features In Oracle

e Broadly, Oracle supports five features
for access controls.

Privileges

Views

Stored Procedures

Roles

Virtual Private Databases (VPD)

oo~ W NP

Privileges
-

e System privileges
- the right to perform a particular action or to perform
an action on any schema objects of a particular type
- E.g., ALTER DATABASE and SELECT ANY TABLE

e Object privileges
- the right to perform a particular action on a specific

schema object such as tables, views, procedures and
types

- E.g.,, SELECT, INSERT

Grant/Revoke Privileges
c—

e System privileges
- GRANT Create Table to Bob [WITH ADMIN OPTION]
- REVOKE Create Table from Bob

- Users with ADMIN OPTION can not only grant the privilege
to other users, but also revoke the privilege from any user.

e Object privileges
- GRANT Select ON tablel to Bob [WITH GRANT OPTION]
- REVOKE Select ON tablel from Bob

- Users who revokes a particular object privileges must be the
direct grantor of the privilege.

- There is always a cascading effect when an object privilege is
revoked.

Some issues (1)

e There is no column privilege for SELECT.
- Column privileges exist for INSERT and UPDATE.
- Coarse-grained control for SELECT.

e There is no timestamp for privileges.
- Revocation (i.e., cascading effect) is also coarse.

f?
Grz%(/tfv Grant p at t2 .
GraM3

Some Issues (2)
-

e An UPDATE statement does NOT require SELECT
privileges.
- Convicts (name, sentence)
Bob has UPDATE privilege on Convicts but no SELECT.
To find out If Alice is in the Convict table,
e UPDATE Convicts SET name = name WHERE name = ‘Alice’;
e IT the table is updated, then Bob knows that Alice is a convict.
To find out the sentence of Alice,

e UPDATE Convicts SET name = name WHERE name = ‘Alice’ AND
sentence = guessed_value;

e IT the table is updated, then the guess is correct.

Views
o

e To create aview

- the user must have been explicitly (i.e., not through
roles) granted one of SELECT, INSERT, UPDATE or
DELETE object privileges on all base object underlying
the view or corresponding system privileges.

e To0 access the view,

- The creator must have the proper privilege to the
underlying base tables.

e To grant access to the view

- The creator must have been granted the privileges to
the base tables with Grant Option.

Stored Procedures
/]

e Two types of procedures in terms of access control
- Definer’s right procedures
- Invoker’s right procedures

e Definer’s right procedures

- A user of a definer’s right procedure requires only the
privilege to execute the procedure and no privileges on the
underlying objects that the procedure access.

- Fewer privileges have to be granted to users, resulting in
tighter control of database access.

- At runtime, the privileges of the owner are always checked.

Issues (1)
c—

e A user with Create Procedure privilege can
effectively share any privilege he/she owns with
other users without grant option.

Just create a definer’s right procedure that uses a
privilege.

Then grant Execute privilege to others.

Create Procedure privilege is too powerful.

Possible fix: when one grants Execute privilege, the system
should check if all the necessary privileges are in fact
grantable.

Stored Procedures
/]

e Invoker's right procedures

- A user of an invoker’s right procedure needs privileges on
the objects that the procedure accesses.

- Invoker’s right procedures can prevent illegal privilege
sharing.

- More like function calls in operating systems.

Issues (2)
c—

e Invoker's right procedures can be embedded with
Trojan Horse.

- Users of invoker's right procedures can blindly run malicious
procedures.

More Issues (3)

e A procedure’s owner (i.e., definer) must have all the
necessary object privileges for referenced objects.

Those privileges must have given directly, not through roles.
At runtime, the owner’s privileges are always checked.
This applies to even invoker’s right procedures.

What this means is that if definers must have the necessary
privileges as long as the procedures are in use.

What if temporary contractors define procedures?

More Issues (4)
c—

e Confusing (seems inconsistent) if definer's right
procedures and invoker’s right procedures are used
together.

- def _def: definer’s procedure invoking definer’s procedure
- Inv_linv: invoker’s procedure invoking invoker’s procedure

- def _inv: definer’s procedure invoking invoker’s procedure
- Inv_def: invoker’s procedure invoking definer’'s procedure

Def and Def

Doris needs Execute on def def
o def def =

- Carl creates def_Wc;b’s def procedure.

Run as Carl:

Create procedure def_def As Carl needs Execute on Bob's def
Begin

bob.def(); // insert into alice.tlv\

End: ~ | Run as Bob:
Bob needs Insert on Alice's tl

- Then grant Execute to Doris and Doris runs def_def.

- The invoker needs only Execute privilege on def_def.
- All definers must have the necessary privileges.

Inv and Inv

- - Doris needs Execute on inv inv
o |nv_|nv —

- Carl creates inv_inv usi ob’s inv procedure.
Run as Doris:

Doris needs Execute on Bob's inv

Create procedure inv_inv :
Carl needs Execute on Bob's inv

Authid Current—User As

Begin A Dori
i _ i i . un as Doris:
bf)b"nv()’ //insertintoalice.tl Doris needs insert on Alice’s t1
End; Bob needs Insert on Alice's tl
Carl does not need Insert

- Then grant Execute to Doris and Doris runs inv_inv.

- Very restrictive.

Def and Inv

Doris needs Execute on def _inv

e def inv
- Carl creates def _inv using bob's inv procedure.
Run as Carl:
Create procedure def _inv Carl needs Execute on Bob's inv
Begin /
Run as Carl:

bob.inv(); /7 insert mW Bob needs Insert on Alice’s tl
End; | Carl needs Insert on Alice’s tl

Doris does NOT need insert on
Alice’s t1

- Then grant Execute to Doris and Doris runs def __inv.

Inv and Def

. Doris needs Execute on inv def
e Inv_def =

- Carl creates inv_def usi ob’s def procedure.
Run as Doris:

Carl needs Execute on Bob's def
Doris does NOT need Execute
on Bob's def??

Create procedure inv_def
Authid Current—User As

Begin

bob.def(); // insert into alice.tl
End: LO\ Run as Bob:

Bob needs Insert on Alice's tl

- Then grant Execute to Doris and Doris runs inv_def.

I ssues
]

e Very confusing
e It does not seem that all consistent.
e Need a formal

Administering roles
-

e Four system privileges
Create Role

Drop Any Role

Grant Any Role

Alter Any Role

AN

e Admin Option

- When a role is granted with “Admin Option”, the
grantee can grant, alter or drop the role.

- When a user creates a role, the creator is granted the
role with “Admin Option”.

Five role authorization types (1)
-

1. By user ID
- CREATE ROLE clerk;
- SET ROLE clerk;

2. By password
- CREATE ROLE manager IDENTIFIED BY password,;
- SET ROLE manager IDENTIFIED BY password,;

3. By application
- CREATE ROLE admin_role IDENTIFIED USING hr.admin;

- admin_role can be enabled only by a module inside the
authorized package (hr.admin).

Five role authorization types (2)
-

4. By an external source (e.g. OS or network)

- CREATE ROLE acc_role IDENTIFIED EXTERNALLY;

- When a user logs into the database, the operating system
Identifies the database roles to be enabled for the user. The
OS manages/stores what roles to enable for each user.

5. By an enterprise directory service

- CREATE ROLE supervisor IDENTIFIED GLOBALLY;

- supervisor is a global role which can be authorized only to
global users by an enterprise directory service.

Why use Roles?
-

e Two main purposes
1. To manage the privileges for a user group (User roles)
- DBA creates a role for a group of users with common
privilege requirements. DBA grants all the required
privileges to a role and then grants the role to
appropriate users.

2. To manage the privileges for an application (Application
roles)

- DBA creates a role (or a set of roles) for an application
and grants it all necessary privileges to run the
application. Then DBA grants the application role to
appropriate users.

Application Roles
-

e How can we secure application roles? That is, we want
application roles to be used only through the associated
applications.

- Use a password for the application role and embed the
password in the application. Then the role can be enabled only
by the application.

- Associate the application role with the application (i.e., a
package). Then the role can be enabled only by a module in
the application.

Security Domain
-

e A user’s security domain includes:
The privileges on all schema objects in his own schema
The privileges granted to the user

The privileges of roles (both directly and indirectly)
granted to the user that are currently enabled.

The privileges and roles granted to the PUBLIC.

User Assignments
-

e To grant a role to a user, one needs to have the
“Grant Any Role” system privilege or have been
granted the role with “Admin Option”.

- GRANT ROLE clerk TO Alice;

e To revoke a role from a user, one needs to have the
“Grant Any Role” system privilege or have been
granted the role with “Admin Option”.

- REVOKE ROLE clerk FROM Alice;

e Users cannot revoke a role from themselves.

Permission Assignments
-

e To grant a privilege to a role, one just needs to be able to
grant the privilege.

- GRANT insert ON tablel TO clerk;

e To revoke a privilege from a role, one just needs to be able to
revoke the privilege.

- REVOKE insert ON tablel FROM clerk;

e No special admin privilege is required.

- It can be a problem since one can make a role unusable by granting
many roles to the role to exceed MAX_ ENABLED ROLES.

e “Grant Option” is not valid when granting an object privilege to
a role.

- To prevent the propagation of object privileges through roles.

Effective times
g

e Granting/revoking a role to/from users (i.e., UA)

- After a current user session issues a “SET ROLE”
statement or a new user session iIs created.

e Granting/revoking a privilege to/from a role (i.e., PA)
- Immediate.

e Dropping a role
- Immediate.

e Try with Oracle!

Default roles
I

e \When a user logs in, all default roles are
enabled.

e \When a user is created, the default role setting
IS ALL.

e When a role Is assigned to a user, the role is
added to the default roles.

e The default roles can be changed.
- ALTER USER alice DEFAULT ROLE clerk, cashier;

Activation/Deactivation of roles
I

e In order to enable a role, a user must have been
granted the role.

e Three types of “Set Role” statements
- SET ROLE clerk;
- SET ROLE NONE;
- SET ROLE ALL EXCEPT clerk;
- One cannot disable roles individually.

e The number of roles that can be concurrently
enabled is limited by “MAX_ENABLED_ ROLES”.

- Initialization parameter

Role hierarchy (1)
-

e Any role can be granted to another role.
- Arole cannot be granted to itself.

- Arole cannot be granted circularly. (e.g., a role x
cannot be granted to a role y if y has been already
granted to X.)

e A role granted to another role is called an
Indirectly granted role.

- It can be explicitly enabled or disabled for a user.

- Whenever a role that contains other roles is enabled,
all indirectly granted roles are enabled as well.

Role hierarchy (2)

Insert

select

delete

R1 is granted to Bob;
SET ROLE R1;
R1, R2, R3 are all enabled.

SET ROLE R2;
R2, R3 are enabled.

SET ROLE R3;
R3 is enabled.

When a senior role is activated, all
junior roles are activated.

{R1}, {R1, R2}, {R2} cannot be activated.

Questions

