CS39000-DM0 Class Notes

Jennifer Neville, Sebastian Moreno

2 Background on Probability and Statistics

These are basic definitions, concepts, and equations that should have been covered in your earlier discrete math and probability courses.

Definition 2.1. Sample space (\boldsymbol{S})
Set of all possible outcomes of an experiment (e.g., $\mathbf{S}=\left\{O_{1}, O_{2}, \ldots, O_{s}\right\}$).
Example. Rolling one 6-sided die $\mathbf{S}=\{1,2,3,4,5,6\}$
Definition 2.2. Event
Any subset of outcomes (e.g., $\left.A=\left\{O_{i}, O_{j}, O_{k}\right\}\right)$ contained in the sample space \mathbf{S}.
Example. Odd numbers from rolling one 6-sided die $\mathbf{A}=\{1,3,5\}$
Definition 2.3. Mutually exclusivity
When events A and B have no outcomes in common (e.g., $A \cap B=\emptyset$).
Example. Let A and B be the odd and even outcomes respectively, from rolling one 6 -sided die, then A and B are mutually exclusive.

Definition 2.4. Axioms of probability
For a sample space \mathbf{S} with possible events $\mathbf{A}_{\mathbf{S}}$, a function that associates real values with each event A is called a probability function if the following properties are satisfied:

1. $0 \leq P(A) \leq 1$ for every A.
2. $P(\mathbf{S})=1$
3. $P\left(A_{1} \vee A_{2} \vee \ldots \vee A_{s} \in \mathbf{S}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots+P\left(A_{n}\right)$ if $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise mutually exclusive events

Properties of probability functions (i.e., implications of axioms):

- $P(A)=1-P(\neg A)$.
- $P($ true $)=1$
- $P($ false $)=0$
- If A and B are mutually exclusive then $P(A \wedge B)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

How to calculate probabilities

When the various outcomes of an experiment are equally likely, the task of computing probability reduces to counting:

1. Let $N:=|\mathbf{S}|$ be the size of sample space (i.e., number of simple outcomes)
2. Let $N(A):=|\mathbf{A}|$ be the number of simple outcomes contained in the event A
3. Then $P(A)=\frac{N(A)}{N}$

Example. Roll two 6 -sided dice. What is the probability that the sum is 8 ?

$$
\begin{aligned}
& |\mathbf{S}|=6 \times 6 ; \text { Event } A=\{2,6\},\{3,5\},\{4,4\},\{5,3\},\{6,2\} \\
& P(\text { sum }=8)=\frac{|\mathbf{S}|}{|A|}=\frac{5}{36}
\end{aligned}
$$

Definition 2.5. Permutation
An ordered sequence of size k taken from a set of n distinct objects without replacement. The number of permutations of size k that can be constructed from n objects is:

$$
P_{k, n}=\frac{n!}{(n-k)!}
$$

If you are choosing an ordered sequence of k objects with replacement instead, there are n^{k} possibilities.

Example. An urn contains ten balls, numbered from 0 to 9 . Two balls are drawn at random. How many different ordered sequences can we draw?
$\mathrm{n}=10 ; \mathrm{k}=2$; then we can draw $\frac{10 \text { ! }}{(10-8)!}=90$.
What happens if once we see a ball, we return it to the urn (i.e., the two draws are with replacement)?
$\mathrm{n}=10 ; \mathrm{k}=2$; then we can draw $10^{2}=100$ (numbers from 00 to 99).
Definition 2.6. Combination
An unordered sequence of size k taken from a set of n distinct objects without replacement. The number of combinations of size k that can be constructed from n objects is:

$$
C_{k, n}=\frac{P_{k, n}}{k!}=\frac{n!}{(n-k)!k!}
$$

If you are choosing an unordered sequence of k objects with replacement instead, there are $C_{k, n+k-1}$ possibilities.

Example. An urn contains ten balls, numbered from 0 to 9 . Two balls are drawn at random. How many different unordered sequences can we draw?
$\mathrm{n}=10 ; \mathrm{k}=2$; then we can draw $\frac{10 \text { ! }}{(10-8)!2!}=45$.

What happens if once we see a ball, we return it to the urn (i.e., the two draws are with replacement)?
$\mathrm{n}=10 ; \mathrm{k}=2$; then we can draw $\frac{(10+2-1)!}{(10+2-1-2)!2!}=55$
(previous result plus $00,11,22,33, \cdots, 99$).
Definition 2.7. Random variable ($R V$)
Mapping from a measurement (i.e., property) of objects to a variable that can take on a set of possible different values.

You can think of a r.v. X as a measurement of interest in the context of an experiment. Each time the experiment is run, an outcome $O \in \mathbf{S}$ occurs and a value x is measured and associated with the outcome O. The r.v. X then consists of all possible values x that can occur as a result of the experiment. Note that the reference to \mathbf{S} is suppressed, often because the sample space is hidden or unknown.

Definition 2.7.1. Discrete random variable
A random variable with a finite set of possible values.
Example. Let X be the sum of the roll of two 6 -sided dice.
X is a discrete random variable with possible values $X=\{2, \cdots, 12\}$.
Definition 2.7.2. Continuous random variable
A random variable with an infinite set of possible values.
Example. Let X be the output of a random number generator between 0 and 1. X is a continuous random variable with possible values $X=[0,1]$.

Definition 2.8. Probability distribution
Probability mass function (for discrete random variables) or probability density function (for continuous random variables) specifies the probability of observing each possible value of a random variable.

Example. Let the random variable X represent the sum of the roll of two 6 -sided dice, then its probability mass function is:

x	2	3	4	5	6	7	8	9	10	11	12
$P(X=x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Definition 2.9. Joint probability distribution
For a set of random variables, gives the probability of every possible combination of values for those random variables.

Example. Let W_{1} be a discrete random variable over the possible weathers $W_{1}=\{$ sunny, rainy, cloudy, snow $\}$, and let W_{2} be a discrete random variable over a possible weather warning $W_{2}=\{$ true, false $\}$

$W_{2} \backslash W_{1}$	sunny	rainy	cloudy	snow
true	0.005	0.080	0.020	0.020
false	0.415	0.120	0.310	0.030

Definition 2.10. Conditional (or posterior) probability
Gives the probability of a set of random variables (e.g., A) given some evidence about the values of another set of random variables (e.g., B).

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)} \quad \text { if } P(B)>0
$$

Example. Based on the previous joint probability distribution $P\left(W_{1}, W_{2}\right)$, what is the probability that there will be a weather warning given that is snowing?

$$
P\left(W_{2}=\text { true } \mid W_{1}=\text { snow }\right)=\frac{P\left(W_{2}=\text { true } \wedge W_{1}=\text { snow }\right)}{P\left(W_{1}=\text { snow }\right)}=\frac{0.020}{0.020+0.030}=0.400
$$

Definition 2.11. Mathematical rules of probability

- Product rule:

$$
P(A \wedge B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

- Chain rule (via successive application of the product rule):

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{n}\right) & =P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) P\left(X_{1}, \ldots, X_{n-1}\right) \\
& =P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) P\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) P\left(X_{1}, \ldots, X_{n-2}\right) \\
& =\ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- Bayes rule (via product rule and definition of conditional probability):

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Definition 2.12. Marginal (or unconditional) probability The probability that an event will occur regardless of conditioning events.

$$
P(A)=\sum_{b \in B} P(A, b)=\sum_{b \in B} P(A \mid b) P(b)
$$

Definition 2.13. Independence
Two events A and B are independent iff:

$$
\begin{array}{lr}
P(A \mid B)=P(A) & \text { or } \\
P(B \mid A)=P(B) & \text { or } \\
P(A, B)=P(A) P(B) &
\end{array}
$$

Example. Based on the previous joint probability distribution $P\left(W_{1}, W_{2}\right)$, are the events "weather warning" and "cloudy" independent?

$$
\begin{aligned}
P\left(W_{1}=\text { cloudy }\right) & =P\left(W_{1}=\text { cloudy }, W_{2}=\text { true }\right)+P\left(W_{1}=\text { cloudy }, W_{2}=\text { false }\right) \\
& =0.02+0.31=0.33 \\
P\left(W_{2}=\text { true }\right) & =P\left(W_{1}=\text { sunny }, W_{2}=\text { true }+\cdots+W_{1}=\text { snow }, W_{2}=\text { true }\right) \\
& =0.005+0.08+0.02+0.02=0.125 \\
P\left(W_{1}=\text { cloudy } \wedge\right. & \left.W_{2}=\text { true }\right)=0.02 \neq 0.04125=P\left(W_{1}=\text { cloudy }\right) \cdot P\left(W_{2}=\text { true }\right)
\end{aligned}
$$

The events are not independent.
Definition 2.14. Conditional independence
Two variables A and B are conditionally independent given Z iff for all values of A, B, Z :

$$
P(A, B \mid Z)=P(A \mid Z) P(B \mid Z)
$$

Note: independence does not imply conditional independence or vice versa.

Definition 2.15. Expected values
The expectation of a random variable X is a measure of location and is defined as:

$$
\begin{aligned}
\text { Discrete: } E[X] & =\sum_{x \in X} x \cdot p(x) \\
\text { Continuous: } E[X] & =\int_{x} x \cdot p(x) d x
\end{aligned}
$$

Definition 2.15.1. Properties of expectation

$$
\text { Function of a rv: } E[h(X)]=\sum_{x \in X} h(x) \cdot p(x)
$$

Change in location: $E[X+b]=E[X]+b$
Scaling by constant: $E[a X]=a \cdot E[X]$
Sum of two rvs: $E[X+Y]=E[X]+E[Y]$
Note that this expression holds even when the random variables X and Y are dependent. This is referred to as linearity of expectation.

$$
\text { Conditional expectation: } E[X \mid Y=y]=\sum_{x \in X} x \cdot P(X=x \mid Y=y)
$$

Example. Based on the previous rv X that represents the sum of the roll of two 6 -sided dice, what is its expected value?

$$
E[X]=\sum_{x=2}^{12} x \cdot p(x)=2 \cdot \frac{1}{36}+3 \cdot \frac{2}{36}+\ldots+12 \cdot \frac{1}{36}=7
$$

Definition 2.16. Variance
The variance of a random variable X is a measure of dispersion and is defined as:

$$
\begin{aligned}
& \qquad \begin{aligned}
\operatorname{Var}(X) & =E\left[(x-E[X])^{2}\right] \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned} \\
& \text { Standard deviation: } \sigma=\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

Definition 2.16.1. Properties of variance

$$
\begin{gathered}
\text { Function of a rv: } \operatorname{Var}(h(X))=\sum_{x \in X}(h(x)-E[h(x)])^{2} \cdot p(x) \\
\text { Change in location: } \operatorname{Var}(X+b)=\operatorname{Var}(X) \\
\text { Scaling by constant: } \operatorname{Var}(a X)=a^{2} \cdot \operatorname{Var}(X) \\
\text { Sum of two rvs: } \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
\end{gathered}
$$

Note that in contrast to expectation, this expression is linear only if X and Y are uncorrelated or independent.

$$
\text { Conditional variance: } \operatorname{Var}(X \mid Y=y)=E\left[(X-E[X \mid Y=y])^{2} \mid Y=y\right]
$$

Definition 2.16.2. Covariance
The covariance between two random variable X and Y is a measure of relation between the two variables and is defined as:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(x-E[X])(y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Example. Based on the previous rv X that represents the sum of the roll of two 6 -sided dice, what is its expected value?

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\sum_{x=2}^{12} x^{2} \cdot p(x)-(7)^{2}=4 \cdot \frac{1}{36}+9 \cdot \frac{2}{36}+\ldots+144 \cdot \frac{1}{36}-7^{2}=\frac{5}{36}
$$

Definition 2.17. Common probability distributions for rvs

- Bernoulli: Binary rv that takes value 1 with success probability p and value 0 with probability $1-p$.

Let $X \sim \operatorname{Bernoulli}(p)$, then the probability distribution of X is

$$
\begin{aligned}
& P(X=x ; p)= \begin{cases}p & \text { if } x=1 \\
1-p & \text { if } x=0\end{cases} \\
& E[X]=p
\end{aligned} \quad V[X]=p(1-p) \text { } l
$$

- Binomial: Describes the number of successful outcomes (i.e., 1s) in n independent Bernoulli(p) trials.

Let $X \sim \operatorname{Bin}(n, p)$, then the probability distribution of X is

$$
\begin{aligned}
& P(X=x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x} \text { for } x \in\{0,1, \cdots, n\} \\
& E[X]=n p \\
& V[X]=n p(1-p)
\end{aligned}
$$

- Multinomial: Generalization of binomial with n trials to case where each trial has k possible outcomes, and outcome i has probability p_{i} of occurring.

Let $X=\left(X_{1}, X_{2}, \cdots, X_{k}\right) \sim \operatorname{Mult}\left(n, p_{1}, p_{2}, \cdots, p_{k}\right)$ such that $\sum_{i=1}^{k} p_{i}=1$, then the probability distribution of X is

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{k}=x_{k}\right)= \begin{cases}\frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}} & \text { if } \sum_{i=1}^{k} x_{i}=n \\
0 & \text { otherwise }\end{cases} \\
& E\left[X_{i}\right]=n p_{i}
\end{aligned} \quad V\left[X_{i}\right]=n p_{i}\left(1-p_{i}\right) \quad l l
$$

- Poisson: Expresses the probability of a given number of events occurring in a fixed interval of time, if the events occur with a known average rate (λ) and the events are independent.

Let $X \sim \operatorname{Poisson}(\lambda)$, then the probability distribution of X is

$$
\begin{aligned}
& P(X=x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!} \\
& E[X]=\lambda
\end{aligned} \quad V[X]=\lambda
$$

- Normal (Gaussian): Very commonly occurring distribution, sometimes informally called the bell curve, which is continuous, symmetric about its mean, and is non-zero over the entire real line.

Let X be a normal distribution with mean μ and variance σ^{2} (i.e., $X \sim N(\mu, \sigma)$), then the probability distribution of X is

$$
\begin{aligned}
& P(X=x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& E[X]=\mu
\end{aligned} \quad V[X]=\sigma^{2} \quad l y
$$

Definition 2.18. Multivariate random variable
A multivariate rv $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ is a list of p random variables that are grouped together, often because they refer to different properties of an individual entity (e.g., height, weight, age of a person).

Definition 2.18.1. Properties of multivariate rvs

$$
\begin{aligned}
& \text { Joint density: } P(\mathbf{X})=P\left(X_{1}, X_{2}, \ldots, X_{p}\right) \\
& \text { Marginal density of a subset: } P\left(X_{i}\right)=\sum_{\mathbf{x} \in \mathbf{X}-X_{i}} P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{p}=x_{p}\right) \\
& \text { Conditional density of a subset: } P\left(X_{i} \mid \mathbf{X}-X_{i}\right)=\frac{P\left(X_{1}, X_{2}, \ldots, X_{p}\right)}{P\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{p}\right)}
\end{aligned}
$$

