Security Analytics Review for Final Exam

Purdue University
Prof. Ninghui Li
Exam Date/Time

- Monday Dec 10 (8am – 10am)
- LWSN B134
Organization of the Course

• Basic machine learning algorithms
• Neural networks
• Big data analytics
• Adversarial machine learning
Topic 2

• Tasks: Exploratory, Descriptive, Predictive, Pattern Discovery

• What are the differences between supervised learning and unsupervised learning?
Topic 2

• Concepts of
 – Model space
 – Scoring function
 – Search technique

• Distance metrics
 – Minkowski: Manhattan, Euclidean, L_0, L_{\infty}
 – Jaccard
Topic 2

• Explain the kNN algorithm for classification.
 – What is the training process?
 – How to predict a sample \(x \)?
 – Does a high \(k \) value result in a more complex model or a simpler model (smoother decision boundary)?
 – How should one determine \(k \)?
 – Is training fast or slow?
 – How large is the model size?
Topic 4: Probability Review

• Able to do conditional probability computation
• Able to judge independent and dependent events
• Understand the base rate fallacy
• Under Conditional Independence
• Able to compute Bernoulli and Binomial
Topic 5: Classification

- Accuracy, Precision and recall, F1 score
- Naïve Bayes on discrete-valued features
- Smoothing
Topic 6: Logistic Regression and SVM

• Linear regression
• Sum-square Error (SSE)
• Logistic-regression
 – Intuition, Odds-Ratio,
• Maximum likelihood estimation
• Intuition behind SVM (margin)
• Linear versus kernel-based SVM
Topic 7: Decision Trees

• Inductive Learning Hypothesis
 – IID assumption
• Understand two sources of inductive bias
 – Language bias
 – Search bias
• Impossibility of bias-free learning
• How to build a decision tree
• Calculating entropy, information gain, Gini impurity
• Overfitting, prepruning, postpruning (reduced error pruning)
Topic 8: Bagging and Random Forest

- **Bagging**: Bootstrap aggregating
- Bootstrap sampling
- Limitations of bagging with decision trees (i.d. not i.i.d.)
- Random forests
 - Need for feature selection
 - Increasing number of trees causes no overfitting
Topic 8: Neural Network (1)

• Types of neurons
 – Linear, binary threshold, rectified Linear, sigmoid (remember)
Neural Network (2)

- Architecture of NN
 - Feed-forward, recurrent
- Percentron classifier
- Percentron learning rule
 - Training for each instance
- Multilayered percentron doesn’t help without non-linearity
- The need for hidden layers
 - Without them, limited in the model space
 - Hidden layers learn features
Neural Network (3)

• Backpropagation
 – Compute gradients (partial derivatives) of error function relative to each weight
• Online, full batch, and mini-batch
Neural Network (4)

• Definition of softmax,
• Definition of cross-entropy
Neural Network (5)

• Convolutional neural networks
 – Why we need them? What other things we can do if not using CNN?
 – Replicating feature recognizer
Neural Network (6)

• Ways to speed up mini-batch learning
 – Momentum, separate adaptive learning rate, rprop, rmsprop
Neural Network (9)

• Ways of dealing of overfitting
 – Weight-decay, Weight-sharing, Early stopping
 – Model averaging, Dropout
 – Creating new training data
Recurrent Neural Networks

- Types of input-output
- Understand issue of Vanishing gradients
- Gated recurrent units
- LSTM
Map-Reduce

• Challenges of cluster computing:
 – Node failures, network bottle-neck, programming
• Meeting the challenges
 – Redundant storage of files, moving jobs to where data is, Map-reduce framework
• Steps involved in Map-reduce framework.
• How to combine Map and reduce to solve problems.
• How the map-reduce framework deal with failures: map worker, reducer, master?
Spark

• Dataframes
• Concepts of transformations and actions
• Why it is faster than map-reduce
PageRank

• How to compute pagerank for simple examples by power iteration method.
• Random walk interpretation
• Dead ends and spider traps
• How dead ends and spider traps are handled?
Adversarial Machine Learning

- What are adversarial examples?
- Not just for Neural Networks
- Relationship to linearity in input
- What do the different maps of Adversarial and Random Cross-Sections mean?
- Concept of transferability