
Security Analytics

Topic 7: Decision Trees

Purdue University
Prof. Ninghui Li

Based on slides by Raymond J. Mooney
and Gavin Brown

Readings

• Principle of Data Mining

– Chapter 10: Predictive Modeling for Classification

• Outline:

– A bit of learning theory

– Classification trees

3

Classification (Categorization)

• Given:

– A description of an instance, xX, where X is the instance
language or instance space.

– A fixed set of categories: C={c1, c2,…cn}

• Determine:

– The category of x: c(x)C, where c(x) is a categorization
function whose domain is X and whose range is C.

– If c(x) is a binary function C={0,1} ({true,false}, {positive,
negative}) then it is called a concept.

4

Learning for Categorization

• A training example is an instance xX, paired
with its correct category c(x): <x, c(x)> for an
unknown categorization function, c.

• Given a set of training examples, D.

• Find a hypothesized categorization function,
h(x), such that:

)()(:)(, xcxhDxcx
Consistency

5

Sample Category Learning Problem

• Instance language: <size, color, shape>

– size {small, medium, large}

– color {red, blue, green}

– shape {square, circle, triangle}

• C = {positive, negative}

• D: Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

6

Hypothesis Selection

• Many hypotheses are usually consistent with the
training data.

– red & circle

– (small & circle) or (large & red)

– (small & red & circle) or (large & red & circle)

– not [(red & triangle) or (blue & circle)]

– not [(small & red & triangle) or (large & blue & circle)]

• Restrict learned functions a priori to a given
hypothesis space, H, of functions h(x) that can be
considered as definitions of c(x).

7

Generalization

• Hypotheses must generalize to correctly classify
instances not in the training data.

• Simply memorizing training examples is a
consistent hypothesis that does not generalize.

• Occam’s razor:
– "when you have two competing theories that make

exactly the same predictions, the simpler one is the
better."

– Finding a simple hypothesis helps ensure
generalization.

8

Ockham (Occam)’s Razor
• William of Ockham (1295-1349) was a Franciscan

friar who applied the criteria to theology:
– “Entities should not be multiplied beyond necessity”

(Classical version but not an actual quote)
– “The supreme goal of all theory is to make the irreducible

basic elements as simple and as few as possible without
having to surrender the adequate representation of a
single datum of experience.” (Einstein)

• Requires a precise definition of simplicity.
• Acts as a bias which assumes that nature itself is

simple.
• Role of Occam’s razor in machine learning remains

controversial.

9

Inductive Learning Hypothesis

• Any function that is found to approximate the target concept
well on a sufficiently large set of training examples will also
approximate the target function well on unobserved
examples.

• Assumes that the training and test examples are drawn
independently from the same underlying distribution.

• This is a fundamentally unprovable hypothesis unless
additional assumptions are made about the target concept
and the notion of “approximating the target function well on
unobserved examples” is defined appropriately (cf.
computational learning theory).

10

Inductive Bias
• Any means that a learning system uses to choose between

two functions that are both consistent with the training
data is called inductive bias.

• Inductive bias can take two forms:
– Language bias: The language for representing concepts defines a

hypothesis space that does not include all possible functions (e.g.
conjunctive descriptions).

– Search bias: The language is expressive enough to represent all
possible functions (e.g. disjunctive normal form) but the search
algorithm embodies a preference for certain consistent functions
over others (e.g. syntactic simplicity).

11

Unbiased Learning

• For instances described by n features each with m values,
there are mn instances. If these are to be classified into c
categories, then there are cm^n possible classification
functions.

– For n=10, m=c=2, there are approx. 22
10
= 3.4 ×

10308 possible functions, of which only 310 = 59,049
can be represented as conjunctions (an incredibly
small percentage!)

• However, unbiased learning is futile since if we consider
all possible functions then simply memorizing the data
without any real generalization is as good an option as
any.

12

Futility of Bias-Free Learning
• A learner that makes no a priori assumptions about the

target concept has no rational basis for classifying any
unseen instances.

• Inductive bias can also be defined as the assumptions that,
when combined with the observed training data, logically
entail the subsequent classification of unseen instances.
– Training-data + inductive-bias novel-classifications

• The rote learner, which refuses to classify any instance

unless it has seen it during training, is the least biased.

13

No Panacea

• No Free Lunch (NFL) Theorem (Wolpert, 1995)
 Law of Conservation of Generalization Performance (Schaffer, 1994)

– One can prove that improving generalization performance on unseen data for
some tasks will always decrease performance on other tasks (which require
different labels on the unseen instances).

– Averaged across all possible target functions, no learner generalizes to unseen
data any better than any other learner.

• There does not exist a learning method that is uniformly better than
another for all problems.

• Given any two learning methods A and B and a training set, D, there always
exists a target function for which A generalizes better (or at least as well) as
B.
– Train both methods on D to produce hypotheses hA and hB.
– Construct a target function that labels all unseen instances according to the

predictions of hA.
– Test hA and hB on any unseen test data for this target function and conclude

that hA is better.

Threshold classifiers

height

weight
t

dancer"" else player"" then)(if tweight

70 CHAPTER 6. TREE MODELS

6.1 From Decision Stumps... t o Decision Trees

Recall the definit ion of a decision stump back in subsect ion 2.1.2, and imagine

we have the following 1-dimensional problem.

10 # #20 # #30 # #40 # #50 # #60#

10.5#
14.1#
17.0#
21.0#
23.2#

27.1#
30.1#
42.0#
47.0#
57.3#
59.9#

x >q ?

yes#no#

ŷ = 0 ŷ =1

x > 25 ?

yes#no#

x >16 ? x > 50 ?

no# yes#

ŷ = 0 ŷ =1

no# yes#

ŷ = 0 ŷ =1

The red crosses are label y = 1, and blue dots y = 0. With this non-linearly

separable data, we decide to fit a decision stump. Our model has the form:

i f x > t t hen ŷ = 1 el se ŷ = 0 (6.1)

SELF-T EST

Where is an opt imal decision stump threshold for

the data and model above? Draw it into the dia-

gram above. Hint : you should find that it has a

classificat ion error rate of about 0.364.

If you locate the opt imal threshold for this model, you will not ice that it com-

mits some errors, and as we know this is because it is a non-linearly separable

problem. A way of visualising the errors is to remember the stump splits theSPLITTING THE

DATA data in two, as shown below. On the left ‘branch’, we predict ŷ = 0, and on the

right, ŷ = 1.

10 # #20 # #30 # #40 # #50 # #60#

10.5#
14.1#
17.0#
21.0#
23.2#

27.1#
30.1#
42.0#
47.0#
57.3#
59.9#

x >q ?

yes#no#

ŷ = 0 ŷ =1

Figure 6.1: The decision stump splits the data.

However, if we choose a di↵erent threshold of t = 50, and use a stump that

makesthedecision theoppositeway round, i.e. i f x > t t hen ŷ = 0 el se ŷ = 1,

then thisstump will havea better minimum error, that is0.273. This, combined

Q. Where is a good threshold?

10 20 30 40 50 60

1
0

Also known as “decision stump”

Decision Stumps

10 20 30 40 50 60

70 CHAPTER 6. TREE MODELS

6.1 From Decision Stumps... t o Decision Trees

Recall the definit ion of a decision stump back in subsect ion 2.1.2, and imagine

we have the following 1-dimensional problem.

10 # #20 # #30 # #40 # #50 # #60#

10.5#
14.1#
17.0#
21.0#
23.2#

27.1#
30.1#
42.0#
47.0#
57.3#
59.9#

x >q ?

yes#no#

ŷ = 0 ŷ =1

x > 25 ?

yes#no#

x >16 ? x > 50 ?

no# yes#

ŷ = 0 ŷ =1

no# yes#

ŷ = 0 ŷ =1

The red crosses are label y = 1, and blue dots y = 0. With this non-linearly

separable data, we decide to fit a decision stump. Our model has the form:

i f x > t t hen ŷ = 1 el se ŷ = 0 (6.1)

SELF-T EST

Where is an opt imal decision stump threshold for

the data and model above? Draw it into the dia-

gram above. Hint : you should find that it has a

classificat ion error rate of about 0.364.

If you locate the opt imal threshold for this model, you will not ice that it com-

mits some errors, and as we know this is because it is a non-linearly separable

problem. A way of visualising the errors is to remember the stump splits theSPLITTING THE

DATA data in two, as shown below. On the left ‘branch’, we predict ŷ = 0, and on the

right, ŷ = 1.

10 # #20 # #30 # #40 # #50 # #60#

10.5#
14.1#
17.0#
21.0#
23.2#

27.1#
30.1#
42.0#
47.0#
57.3#
59.9#

x >q ?

yes#no#

ŷ = 0 ŷ =1

Figure 6.1: The decision stump splits the data.

However, if we choose a di↵erent threshold of t = 50, and use a stump that

makesthedecision theoppositeway round, i.e. i f x > t t hen ŷ = 0 el se ŷ = 1,

then thisstump will havea better minimum error, that is0.273. This, combined

The stump “splits” the dataset.

Here we have 4 classification errors.

10.5
14.1
17.0
21.0
23.2

27.1
30.1
42.0
47.0
57.3
59.9

x > 25 ?

yes no
ŷ = 0 ŷ =1

1
0

predict 0 predict 1

A modified stump

10 20 30 40 50 60

6.1. FROM DECISION STUMPS... TO DECISION TREES 71

with fig 6.1, shows a way for us to make an improved stump model.

Our improved decision stump model, for a given threshold t , is:

Set yr i gh t to the most common label in the (> t) subsample.

Set yl ef t to the most common label in the (< t) subsample.

i f x > t t hen

predict ŷ = yr i gh t

el se

predict ŷ = yl ef t

endif

The learning algorithm would be the same, simple line-search to find the opt i-

mum threshold that minimises the number of mistakes. So, our improved stump

model works by thresholding on the training data, and predict ing a test dat -

apoint label as the most common label observed in the t raining data subsample.

Even with this improved stump, though, we are st ill making some errors.

There is in principle no reason why we can’t fit another decision stump (or

indeed any other model) to these data sub-samples. On the left branch data

sub-sample, we could easily pick an opt imal threshold for a stump, and the same

for the right . Not ice that the sub-samples are both linearly separable, therefore

we can perfect ly classify them with the decision stump. The result1 of doing

this is the following model, which is an example of a decision tree:10 # #20 # #30 # #40 # #50 # #60#

10.5#
14.1#
17.0#
21.0#
23.2#

27.1#
30.1#
42.0#
47.0#
57.3#
59.9#

x > q ?

yes#no#

ŷ = 0 ŷ =1

x > 25 ?

yes#no#

x >16 ? x > 50 ?

no# yes#

ŷ = 0 ŷ = 1

no# yes#

ŷ = 0 ŷ = 1

Figure 6.2: A decision t ree for the toy 1d problem.

1By this point I hope you’ve figured out that the opt imal threshold for the toy problem

was about x = 25. Several other thresholds (in fact an infinity of t hem between 23.2 and 27.1)

would have got t he same error rate of 4/ 11, but we chose one arbit rarily.

10.5
14.1
17.0
21.0
23.2
27.1
30.1
42.0
47.0

57.3
59.9

x > 48 ?

yes no

1
0

Here we have 3

classification errors.

From Decision Stumps, to Decision Trees

- New type of non-linear model

- Copes naturally with continuous and categorical data

- Fast to both train and test (highly parallelizable)

- Generates a set of interpretable rules

Recursion…

10.5
14.1
17.0
21.0
23.2

27.1
30.1
42.0
47.0
57.3
59.9

x > 25 ?

yes no

Just another
dataset!

Build a stump!

x >16 ?

no yes

ŷ = 0ŷ =1

x > 50 ?

no yes

ŷ =1 ŷ = 0

Decision Trees = nested rules

x > 25 ?

yes no

x >16 ? x > 50 ?

no yes

ŷ = 0ŷ =1

no yes

ŷ = 0ŷ =1

10 20 30 40 50 60

if x>25 then

 if x>50 then y=0 else y=1; endif

else

 if x>16 then y=0 else y=1; endif

endif

Trees build “orthogonal” decision boundaries.

Boundary is piecewise, and at 90 degrees to feature axes.

if x>25 then

 if x>50 then y=0 else y=1; endif

else

 if x>16 then y=0 else y=1; endif

endif

Decision trees can be seen as nested rules.
Nested rules are FAST, and highly parallelizable.

x,y,z-coordinates per joint, ~60 total
x,y,z-velocities per joint, ~60 total
joint angles (~35 total)
joint angular velocities (~35 total)

10

0

5

0 5
 10

0

5

We’ve been assuming continuous variables!

10 20 30 40 50 60

The Tennis Problem

Outlook

Humidity

HIGH

RAIN SUNNY
OVERCAST

NO

Wind

YES

WEAK STRONG

NO

NORMAL

YES

YES

6.3. DEALING WITH CATEGORICAL DATA 75

Once again, an answer for any given example is found by following a path

down the t ree, answering quest ions as you go. Each path down the tree encodes

an if-then rule. The full ruleset for this t ree is:

i f (Out l ook==sunny AND Humi di t y==hi gh) t hen NO

i f (Out l ook==sunny AND Humi di t y==nor mal) t hen YES

i f (Out l ook==over cast) t hen YES

i f (Out l ook==r ai n AND Wi nd==st r ong) t hen NO

i f (Out l ook==r ai n AND Wi nd==weak) t hen YES

Not ice that this t ree (or equivalent ly, the ruleset) can correct ly classify every

example in the t raining data. This tree is our model, or, seen in another light,

the set of rules is our model. These viewpoints are equivalent . The t ree was

constructed automat ically (learnt) from the data, just as the parameters of our

linear models in previous chapters were learnt from algorithms working on the

data. Not ice also that the model deals with scenarios that were not present in

the training data – for example the model will also give a correct response if we

had a completely never-before-seen situat ion like this:

Out look Tem p er at u r e H um id i t y W ind P lay Tennis?

Overcast M ild High Weak Yes

The t ree can therefore deal with data points that were not in the training data.

I f you remember from earlier chapters, this means the t ree has good generalisa-

tion accuracy, or equivalent ly, it has not overfitted.

Let ’s consider another possible t ree, shown in figure 6.5. If you check, this

t ree also correctly classifies every example in the training data. However, the

test ing datapoint “ overcast / mild/ high/ weak” , receives a classificat ion of ‘NO’.

Whereas, in fact , as we just saw, the correct answer is YES. This decision t ree

made an incorrect predict ion because it was overfitted to the t raining data. OVERFIT T ING

Asyou will remember, wecan never tell for surewhether a model isoverfit ted

unt il it is evaluated on some test ing data. However, with decision t rees, a strong

indicator that they are overfit ted is that they are very deep, that is the rules

are very fine-tuned to condit ions and sub-condit ions that may just be irrelevant

facts. The smaller t ree just made a simple check that the out look was overcast ,

whereas the deeper t ree expanded far beyond this simple rule.

SELF-T EST

What predict ion will the tree in figure 6.5 give for

this test ing datapoint?

Out look Tem p er at u r e H um id i t y W ind

Sunny Mild High St rong

27

Picking a Good Split Feature

• Goal is to have the resulting tree be as small as possible, per
Occam’s razor.

• Finding a minimal decision tree (nodes, leaves, or depth) is
an NP-hard optimization problem.

• Top-down divide-and-conquer method does a greedy search
for a simple tree but does not guarantee to find the smallest.
– General lesson in ML: “Greed is good.”

• Want to pick a feature that creates subsets of examples that
are relatively “pure” in a single class so they are “closer” to
being leaf nodes.

The Tennis Problem

Note: 9 examples say “YES”, while 5 say “NO”.

Partitioning the data…

Thinking in Probabilities…

31

Entropy

• Entropy of a set of examples, S, relative to a binary classification is:

 where p1 is the fraction of positive examples in S and p0 is the fraction of
negatives.

• If all examples are in one category, entropy is zero (we define 0log(0)=0)

• If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1.

• Entropy can be viewed as the number of bits required on average to encode
the class of an example in S where data compression (e.g. Huffman coding) is
used to give shorter codes to more likely cases.

• For multi-class problems with c categories, entropy generalizes to:

)(log)(log)(020121 ppppSEntropy

c

i

ii ppSEntropy
1

2)(log)(

We often write H(S) for Entropy(S).

32

Entropy Plot for Binary Classification

The “Information” in a feature

H(X) = 0.72193

Less uncertainty = more information

Calculating Entropy

Information Gain, also known as “Mutual Information”

maximum
information gain

gain

Outlook

Temp Temp

Humidity Humidity

HIGH

RAIN SUNNY
OVERCAST

Temp

Humidity

MILD

Wind Wind

HIGH

YES

WEAK STRONG

NO

NORMAL

YES

WEAK
STRONG

NO

HOT

NO

COOL

Wind

YES

WEAK
STRONG

NO

Humidity

MILD HOT

Wind

HIGH

STRONG

YES

COOL

YES

MILD

HIGH

NO YES

NORMAL
NORMAL

NO

YES YES

COOL

NO

WEAK

YES

NORMAL

Gini impurity (not to be confused wity
Gini coefficient in economics)

• Gini impurity of a set of examples, S, relative to a binary
classification is: 𝑝1𝑝0 + 𝑝0𝑝1 = 1 − 𝑝1

2 − 𝑝0
2

 where p1 is the fraction of positive examples and p0 is the fraction
of negatives.

• If all examples are in one category, Gini impurity is zero
• If examples are equally mixed (p1=p0=0.5), Gini impurity is a

maximum of 0.5.
• When : 𝑝1 = 0.8, Gini impurity is 0.32
• For multi-class problems with c categories, Gini inpurity

generalizes to: 1 − 𝑝𝑖
2

• Gini impurity measures how often a randomly chosen element
from the set would be incorrectly labeled if it was randomly
labeled according to the distribution of labels in the subset.

• Used in the CART (classification and regression tree) algorithm

39

Bias in Decision-Tree Induction

• Using either information-gain or Gini impurity
gives a bias for trees with smaller depths.

• This is a search (preference) bias instead of a
language (restriction) bias.

40

Properties of Decision Tree Learning

• Continuous (real-valued) features can be handled by allowing
nodes to split a real valued feature into two ranges based on
a threshold (e.g. length < 3 and length 3)

• Classification trees have discrete class labels at the leaves,
regression trees allow real-valued outputs at the leaves.

• Algorithms for finding consistent trees are efficient for
processing large amounts of training data for data mining
tasks.

42

Overfitting
• Learning a tree that classifies the training data perfectly may

not lead to the tree with the best generalization to unseen
data.
– There may be noise in the training data that the tree is erroneously

fitting.
– The algorithm may be making poor decisions towards the leaves of the

tree that are based on very little data and may not reflect reliable
trends.

• A hypothesis, h, is said to overfit the training data is there
exists another hypothesis which, h´, such that h has less
error than h´ on the training data but greater error on
independent test data.

hypothesis complexity

ac
cu

ra
cy

on training data

on test data

tree depth / length of rules

testing
error

optimal depth about here

1 2 3 4 5 6 7 8 9

starting to overfit

Overfitting in Decision Trees; Depth is main parameter

48

Overfitting Prevention (Pruning) Methods

• Two basic approaches for pruning decision trees
– Prepruning: Stop growing tree as some point during top-down

construction when there is no longer sufficient data to make
reliable decisions.
• Limiting depth to be under a threshold
• Statistical test: Use a statistical test on the training data to

determine if any observed regularity can be dismisses as likely due to
random chance.

– Postpruning: Grow the full tree, then remove subtrees.
• Could use Cross-validation: Reserve some training data as a

hold-out set (validation set, tuning set) to evaluate utility of
subtrees.

49

Reduced Error Pruning

• A post-pruning, cross-validation approach.

 Partition training data in “train” and “validation” sets.
Build a complete tree from the “train” data.
Until accuracy on validation set decreases do:
 For each non-leaf node, n, in the tree do:
 Temporarily prune the subtree below n and replace it with a
 leaf labeled with the current majority class at that node.
 Measure and record the accuracy of the pruned tree on the
 validation set.
 Permanently prune the node that results in the greatest increase in
 accuracy on the validation set.

50

Issues with Reduced Error Pruning

• The problem with this approach is that it potentially
“wastes” training data on the validation set.

• Severity of this problem depends where we are on
the learning curve:

te
st

 a
cc

u
ra

cy

number of training examples

Different Flavors of Decision Trees

• ID3, or alternative Dichotomizer, was the first of three Decision Tree
implementations developed by Ross Quinlan (Quinlan, J. R. 1986.
Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106.)
Only categorical predictors and no pruning.

• C4.5, Quinlan's next iteration. The new features (versus ID3) are: (i)
accepts both continuous and discrete features; (ii) handles
incomplete data points; (iii) solves over-fitting problem by (very
clever) bottom-up technique usually known as "pruning"; and (iv)
different weights can be applied the features that comprise the
training data.

Different flavors

• C5.0, The most significant feature unique to C5.0 is a scheme for
deriving rule sets. After a tree is grown, the splitting rules that define
the terminal nodes can sometimes be simplified: that is, one or more
condition can be dropped without changing the subset of
observations that fall in the node.

• CART or Classification And Regression Trees is often used as a generic
acronym for the term Decision Tree, though it apparently has a more
specific meaning. In sum, the CART implementation is very similar to
C4.5. Weka includes Java version of C4.5 called J48.

