Security Analytics

Topic 5: Probabilistic Classification Models: Naïve Bayes

Purdue University
Prof. Ninghui Li
Based on slides by Prof. Jenifer Neville and
Chris Clifton

Readings

- Principle of Data Mining
 - Chapter 10: Predictive Modeling for Classification
 - 10.8 The Naïve Bayes Model
- From Speech and Language Processing. Daniel Jurafsky & James H. Martin
 - Chapter 4: Naive Bayes and Sentiment
 Classification
 - https://web.stanford.edu/~jurafsky/slp3/4.pdf

The Classification Problem

- Given input x, the goal is to predict y, which is a categorical variable
 - y is called the class label
 - x is the feature vector
- Example:
 - x: monthly income and bank saving amount;
 y: risky or not risky
 - x: bag-of-words representation of an email;
 y: spam or not spam

Precision and Recall

- Given a dataset of brain scan images, we train a classifier that identify signs of tumor with 99% accuracy
- Did we do a good job?
- Here is a trivial classifier that has 99.9% accuracy!
 - Just says no. It works because 99.9% of brain scans do not show signs of tumor
- Lesson: Accuracy is not the best way to evaluate the learning system when the data is heavily skewed!
- Intuition: we need a measure that captures the class we care about! (rare)

Precision and Recall

- The learner can make two kinds of mistakes:
 - False Positive
 - False Negative

	True Label	10 1e Label
Predicted 1	True Positive	False Positive
Predicted 0	False Negative	True Negative

• Precision:

$$\frac{\text{True Pos}}{\text{Predicted Pos}} = \frac{\text{True Pos}}{\text{True Pos} + \text{False Pos}}$$

- "when we predicted the rare class, how often are we right?"
- Recall

$$\frac{\text{True Pos}}{\text{Actual Pos}} = \frac{\text{True Pos}}{\text{True Pos} + \text{False Neg}}$$

• "Out of all the instances of the rare class, how many did we catch?"

Precision and Recall

Precision and Recall give us two reference points to compare learning performance

	Precision	Recall
Algorithm 1	0.5	0.4
Algorithm 2	0.7	0.1
Algorithm 3	0.02	1

Which algorithm is better?

Ît depends, but a single score would help.

$$\frac{P+R}{2}$$

• Option 2: F-Score

$$2\frac{PR}{P+R}$$

Properties of f-score:

- Ranges between 0-1
- Prefers precision and recall with similar values

Discussions of Mathematical Means

• Arithmetic
$$\frac{x+y}{2}$$

• Geometric
$$\sqrt{xy}$$

• Harmonic
$$\frac{2}{\frac{1}{x} + \frac{1}{y}} = \frac{2xy}{x+y} = \sqrt{xy} \frac{\sqrt{xy}}{\frac{x+y}{2}}$$

- In a round trip, if x is speed of one way, y is speed of the other way, the overall speed is the harmonic mean.
- Geometric mean is always ≤ arithmetic mean
- Harmonic mean is always ≤ geometric mean
- When $x \ll y$, arithmetic mean is primarily determined by y, while harmonic mean is most affected by x.

NAÏVE BAYES CLASSIFIER

Example: Play Tennis

PlayTennis: training examples

		J			
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Naïve Bayes

- Algorithm: Discrete-Valued Features
 - Learning Phase: Given a training set S of F features and L classes,

```
For each target value of c_i (c_i = c_1, \dots, c_L)
\hat{P}(c_i) \leftarrow \text{estimate } P(c_i) \text{ with examples in S;}
For every feature value x_{jk} of each feature x_j (j = 1, \dots, F; k = 1, \dots, N_j)
\hat{P}(x_j = x_{jk} \mid c_i) \leftarrow \text{estimate } P(x_{jk} \mid c_i) \text{ with examples in S;}
```

Output: F * L conditional probabilistic (generative) models

- Test Phase: Given an unknown instance $\mathbf{x}' = (a'_1, \dots, a'_n)$ "Look up tables" to assign the label c^* to \mathbf{X}' if

$$[\hat{P}(a_1' \mid c^*) \cdots \hat{P}(a_n' \mid c^*)] \hat{P}(c^*) > [\hat{P}(a_1' \mid c_i) \cdots \hat{P}(a_n' \mid c_i)] \hat{P}(c_i), \quad c_i \neq c^*, c_i = c_1, \dots, c_L$$

Example: Play Tennis

PlayTennis: training examples

		J			
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Learning Phase

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

$$P(\text{Play=}Yes) = 9/14$$
 $P(\text{Play=}No) = 5/14$

- Test Phase
- Given a new instance, predict its label

x'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Look up tables achieved in the learning phrase

```
P(Outlook=Sunny | Play=Yes) = 2/9 \qquad P(Outlook=Sunny | Play=No) = 3/5
P(Temperature=Cool | Play=Yes) = 3/9 \qquad P(Temperature=Cool | Play==No) = 1/5
P(Huminity=High | Play=Yes) = 3/9 \qquad P(Huminity=High | Play=No) = 4/5
P(Wind=Strong | Play=Yes) = 3/9 \qquad P(Wind=Strong | Play=No) = 3/5
P(Play=Yes) = 9/14 \qquad P(Play=No) = 5/14
```

 Decision making with the maximum a posterior assignment (MAP) rule

```
P(Yes \mid \mathbf{x}') \approx [P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = 0.0053
P(No \mid \mathbf{x}') \approx [P(Sunny \mid No) P(Cool \mid No)P(High \mid No)P(Strong \mid No)]P(Play=No) = 0.0206
```

Given the fact $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$, we label \mathbf{x}' to be "No".

Zero conditional probability

- If no example contains the feature value
- In this circumstance, we face a zero conditional probability problem during test

$$\hat{P}(x_1 | c_i) \cdots \hat{P}(a_{jk} | c_i) \cdots \hat{P}(x_n | c_i) = 0$$
 for $x_j = a_{jk}$, $\hat{P}(a_{jk} | c_i) = 0$

For a remedy, class conditional probabilities re-estimated with

$$\hat{P}(a_{jk} \mid c_i) = \frac{n_c + mp}{n + m}$$
 (m-estimate)

 n_c : number of training examples for which $x_j = a_{jk}$ and $c = c_i$

n: number of training examples for which $c = c_i$

p: prior estimate (usually, p = 1/t for t possible values of x_i)

m: weight to prior (number of "virtual" examples, $m \ge 1$)

Zero conditional probability

Example: P(outlook=overcast | no)=0 in the play-tennis dataset

Adding m "virtual" examples (m: up to 1% of #training example)

- In this dataset, # of training examples for the "no" class is 5.
- We can only add m=1 "virtual" example in our m-esitmate remedy.
- The "outlook" feature can takes only 3 values. So p=1/3.
 - Re-estimate P(outlook | no) with the m-estimate

P(overcast|no) =
$$\frac{0+1*(\frac{1}{3})}{5+1} = \frac{1}{18}$$

P(sunny|no) =
$$\frac{3+1*(\frac{1}{3})}{5+1} = \frac{5}{9}$$
 P(rain|no) = $\frac{2+1*(\frac{1}{3})}{5+1} = \frac{7}{18}$

Numerical Stability

• Recall: NB classifier:

$$\propto \prod_{i=1}^{m} P(X_i|Y)P(Y)$$

- Multiplying probabilities can get us into problems!
- Imagine computing the probability of 2000 independent coin flips
- Most programming environments: $(.5)^{2000}=0$

Numerical Stability

- Our problem: Underflow Prevention
- Recall: log(xy) = log(x) + log(y)
- better to sum logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} \log P(c_j) + \sum_{i \in positions} \log P(x_i \mid c_j)$$

Naïve Bayes: Dealing with Continuous-valued Features

When facing a continuous-valued feature

Conditional probability often modeled with the normal distribution

$$\hat{P}(x_j \mid c_i) = \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(x_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

 μ_{ji} : mean (avearage) of feature values x_j of examples for which $c = c_i$

 σ_{ji} : standard deviation of feature values \mathbf{x}_j of examples for which $c = c_i$

- Learning Phase: for $\mathbf{X} = (X_1, \dots, X_n), C = c_1, \dots, c_L$

Output: $n \times L$ normal distributions and $P(C = c_i)$ $i = 1, \dots, L$

- Test Phase: Given an unknown instance $X' = (a'_1, \dots, a'_n)$
 - Instead of looking-up tables, calculate conditional probabilities with all the normal distributions achieved in the learning phrase
 - Apply the MAP rule to assign a label (the same as the discrete case)

Naïve Bayes

- Example: Continuous-valued Features
 - Temperature is naturally of continuous value.

Yes: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8

No: 27.3, 30.1, 17.4, 29.5, 15.1

Estimate mean and variance for each class

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2$$

$$\mu_{Yes} = 21.64, \quad \sigma_{Yes} = 2.35$$

$$\mu_{No} = 23.88, \quad \sigma_{No} = 7.09$$

Learning Phase: output two Gaussian models for P(temp|C)

$$\hat{P}(x \mid Yes) = \frac{1}{2.35\sqrt{2\pi}} \exp\left(-\frac{(x-21.64)^2}{2\times2.35^2}\right) = \frac{1}{2.35\sqrt{2\pi}} \exp\left(-\frac{(x-21.64)^2}{11.09}\right)$$

$$\hat{P}(x \mid No) = \frac{1}{7.09\sqrt{2\pi}} \exp\left(-\frac{(x-23.88)^2}{2\times7.09^2}\right) = \frac{1}{7.09\sqrt{2\pi}} \exp\left(-\frac{(x-23.88)^2}{50.25}\right)$$

Probabilistic Classification

Establishing a probabilistic model for classification (cont.)

Generative model (must be probabilistic)

$$P(\mathbf{x} \mid c) \quad c = c_1, \dots, c_L, \mathbf{x} = (x_1, \dots, x_n)$$

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

- L probabilistic models have to be trained independently
- Each is trained on only the examples of the same label
- Output L probabilities for a given input with L models
- "Generative" means that such a model produces data subject to the distribution via sampling.

Probabilistic Classification

- Establishing a probabilistic model for classification
 - Discriminative model

$$P(c \mid \mathbf{x}) \quad c = c_1, \dots, c_L, \mathbf{x} = (x_1, \dots, x_n)$$

- Train one discriminative classifier, all training examples of different classes must be jointly used to build up a single discriminative classifier.
- Output L probability values for L class labels in a probabilistic classifier while a single label is achieved by a non-probabilistic classifier.
- Example: Logistic Regression, SVM, etc.

Bayes rule for probabilistic classifier

 The learner considers a set of <u>candidate labels</u>, and attempts to find <u>the most probable</u> one y_eY, given the observed data.

 Such maximally probable assignment is called <u>maximum a</u> <u>posteriori</u> assignment (<u>MAP</u>); Bayes theorem is used to compute it:

$$y_{MAP} = argmax_{y \in Y} P(y|x) = argmax_{y \in Y} P(x|y) P(y)/P(x)$$

= $argmax_{y \in Y} P(x|y) P(y)$

Since P(x) is the same for all $y \in Y$

Bayes Classifier

Maximum A Posterior (MAP) classification rule

For an input x, find the largest one from L probabilities output by a discriminative probabilistic classifier

$$P(c_1 | \mathbf{x}), ..., P(c_L | \mathbf{x}).$$

Assign x to label c^* if $P(c^* \mid x)$ is the largest.

- Generative classification with the MAP rule
 - Apply Bayesian rule to convert them into posterior probabilities

$$P(c_i \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid c_i)P(c_i)}{P(\mathbf{x})} \propto P(\mathbf{x} \mid c_i)P(c_i)$$

$$for \ i = 1, 2, \dots, L$$
Common factor for all L probabilities

Then apply the MAP rule to assign a label

Naïve Bayes

Bayes classification

$$P(c/\mathbf{x}) \propto P(\mathbf{x}/c)P(c) = P(x_1,\dots,x_n \mid c)P(c)$$
 for $c = c_1,\dots,c_L$.

Difficulty: learning the joint probability $P(x_1, \dots, x_n \mid c)$ is infeasible!

- Naïve Bayes classification
- Assume all input features are class conditionally independent!

$$P(x_1, x_2, \dots, x_n \mid c) = \underbrace{P(x_1 \mid x_2, \dots, x_n, c)} P(x_2, \dots, x_n \mid c)$$
Applying the independence e assumption
$$= P(x_1 \mid c) P(x_2, \dots, x_n \mid c)$$

$$= P(x_1 \mid c) P(x_2 \mid c) \dots P(x_n \mid c)$$

- Apply the MAP classification rule: assign $\mathbf{x}' = (a_1, a_2, \dots, a_n)$ to c^*

$$\underbrace{[P(a_1 \mid c^*) \cdots P(a_n \mid c^*)]P(c^*) > [P(a_1 \mid c) \cdots P(a_n \mid c)]P(c), \quad c \neq c^*, c = c_1, \cdots, c_L}_{\text{estimate of } P(a_1, \cdots, a_n \mid c^*)} \qquad \text{esit mate of } P(a_1, \cdots, a_n \mid c)$$

Summary

- Naïve Bayes: the conditional independence assumption
 - Training and test are very efficient
 - Two different data types lead to two different learning algorithms
 - Working well sometimes for data violating the assumption!
- A popular generative model
 - Performance competitive to most of state-of-the-art classifiers even in presence of violating independence assumption
 - Many successful applications, e.g., spam mail filtering
 - A good candidate of a base learner in ensemble learning
 - Apart from classification, naïve Bayes can do more...