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Readings

* Principle of Data Mining

— Chapter 10: Predictive Modeling for Classification
* 10.8 The Naive Bayes Model

* From Speech and Language Processing. Daniel
Jurafsky & James H. Martin

— Chapter 4: Naive Bayes and Sentiment
Classification

— https://web.stanford.edu/~jurafsky/slp3/4.pdf



The Classification Problem

* Given input x, the goal is to predict y, which is
a categorical variable

— y is called the class label
— X is the feature vector

* Example:

— X: monthly income and bank saving amount;
y: risky or not risky

— X: bag-of-words representation of an email;
y: spam or not spam



Precision and Recall

e Given a dataset of brain scan images, we train a
classifier that identify signs of tumor with 99% accuracy

e Did we do a good job?
e Here is a trivial classifier that has 99.9% accuracy!

e Just says no. It works because 99.9% of brain scans do not
show signs of tumor

e | esson: Accuracy is not the best way to evaluate the learning
system when the data is heavily skewed!

e Intuition: we need a measure that captures the class
we care about! (rare)



Precision and Recall

e The learner can make two kinds of mistakes:

Trie Label '@e Label
e False Positive
Predicted True False
. Positive Positive
e False Negative 1
Predicted False True
O Negative Negative
True Pos B True Pos
e Precision: Predicted Pos  True Pos + False Pos

e “when we predicted the rare class, how often are we right?”

e Recall True Pos _ True Pos
Actual Pos  True Pos 4+ False Neg

e “QOut of all the instances of the rare class, how many did we catch?”




Precision and Recall

e Precision and Recall give us two reference points to compare learning

performance

Precision Recall
Algorithm 0.5 0.4
1
Algorithm 0.7 0.1
2
Algorithm 0.02 1
3

e Which algorithm is better?

e Option 1: Average

e Option 2: F-Score

It depends, but a single score would help.
P+R

2

2
PR

P+ R

Properties of f-score:
* Ranges between 0-1
* Prefers precision and recall
with similar values



Discussions of Mathematical Means

Arithmetic Xy

2
Geometric /XY

2

: _ 2xy
Harmonic — = = w/
l+1 X+y x+y

Xy
— In a round trip, if x is speed of one way, y is speed of the
other way, the overall speed is the harmonic mean.

Geometric mean is always < arithmetic mean

Harmonic mean is always < geometric mean

When x < y, arithmetic mean is primarily
determined by y, while harmonic mean is most
affected by x.



NAIVE BAYES CLASSIFIER



Example

e Example: Play Tennis

PlayTennis: training examples
L L

Day Outlook  Temperature = Humidity = Wind | PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No




Nailve Bayes

Algorithm: Discrete-Valued Features

— Learning Phase: Given a training set S of F features and L classes,

For each target value of c. (c. =¢,;--,C, )
P(c,) < estimate P(c;) with examplesin S;
For every feature value x;, of each feature x; (J=1,-, F;k=1--,N;)

F3(xj =X, | C;) < estimate P(x, |c;) with examplesin S;
Output: F * L conditional probabilistic (generative) models
— Test Phase: Given an unknown instance x'= (a{f ' ',ﬂ;)

“Look up tables” to assign the label ¢* to X if
[P(a 1) P@ 1 P> [P(a 1 ¢.)--- D@ 1e)IP(c,), ¢ ¢, c.=c,p 0,
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Example

e Example: Play Tennis

PlayTennis: training examples
L L

Day Outlook  Temperature = Humidity = Wind | PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Example

e Learning Phase

Outlook | Play=Yes Temperature | Play=Yes
Sunny | 2/9 Hot 2/9
Overcast 4/9 Mild 4/9
Rain 3/9 Cool 3/9

Humidity | Play=Yes

High 3/9
Normal 6/9

Wind || Play=Yes

Strong 3/9
Weak 6/9

P(Play=Yes) =9/14 P(Play=No) = 5/14
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Example

e Test Phase

— Given a new instance, predict its label
X'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)
— Look up tables achieved in the learning phrase
P(Outlook=Sunny|Play=Yes) =2/9  P(Outlook=Sunny|Play=No) = 3/5
P(Temperature=Cool | Play=Yes) = 3/9 P(Temperature=Cool|Play==No) =1/5
P(Huminity=High | Play=Yes) =3/9 ~ P(Huminity=High|Play=No) = 4/5
P(Wind=5Strong | Play=Yes) = 3/9 P(Wind=5trong | Play=No) = 3/5
P(Play=Yes) = 9/14 P(Play=No) = 5/14
— Decision making with the maximum a posterior assignment
(MAP) rule

P(Yes|X") = [P(Sunny|Yes)P(Cool | Yes)P(High|Yes)P(Strong| Yes)|P(Play=Yes) = 0.0053
P(No|x") = [P(Sunny|No) P(Cool | No)P(High| No)P(Strong | No)]P(Play=No) = 0.0206

Given the fact P(Yes|X’) < P(NolX"), we label X’ to be “No”.
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Zero conditional probability

e If no example contains the feature value

— In this circumstance, we face a zero conditional probability
problem during test

|3(X1|Ci)‘“|5(ajk|Ci)'“|5(xn|ci):0 for Xj = aj, lﬁ(ajk|ci)20

— For a remedy, class conditional probabilities re-estimated with

. n. +mp
n+m

n. :number of training examples for which x; =a; and c =

n :number of training examples for which ¢ =c,
p :prior estimate (usually, p =1/t fort possible values of x;)

m : weight to prior (number of "virtual" examples, m >1)
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Zero conditional probability

Example: P(outlook=overcast|no)=0 in the play-tennis dataset

III

Adding m “virtual” examples (771: up to 1% of #training example)

o In this dataset, # of training examples for the “no” class is 5.

e We can only add m=1 “virtual” example in our m-esitmate remedy.
— The “outlook” feature can takes only 3 values. So p=1/3.

— Re-estimate P(outlook Ino) with the m-estimate

1
O+1x(—
P(overcast|no) = (3) ==
5+1 18
3¢15(3) s | 2+1+(3) 7
P(sunny|no) = 5+13 == P(rain|no) = 5+13 =
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Numerical Stability

 Recall: NB classifier: X H P(Xz ‘Y)P(Y)
1=1
— Multiplying probabilities can get us into problems!

— Imagine computing the probability of 2000 independent
coin flips

— Most programming environments: (.5)2999=0



Numerical Stability

Our problem: Underflow Prevention

Recall: log(xy) = log(x) + log(y)

better to sum logs of probabilities rather than multiplying
probabilities.

Class with highest final un-normalized log probability score
is still the most probable.

Cng =argmax log P(c;)+ > logP(x; |c;)

cjeC icpositions



Naive Bayes: Dealing with Continuous-valued

Features
When facing a continuous-valued feature

Conditional probability often modeled with the normal distribution

A 1 (X =)
P(x, 1) = exp[— 4 ]
J \/ﬂaﬁ 207

;- mean (avearage) of feature values x; of examples for which ¢ =c;

o ; -standard deviation of feature values x; of examples for which ¢ =

— Learning Phase: forX=(X,, - X,), C=c;,00

Output: nxL normal distributions and P(C=¢;) i=1--- L
— Test Phase: Given an unknown instance X' =(4,,--4a;,)

e Instead of looking-up tables, calculate conditional probabilities with all the
normal distributions achieved in the learning phrase
e Apply the MAP rule to assign a label (the same as the discrete case)
18



Nailve Bayes

e Example: Continuous-valued Features
— Temperature is naturally of continuous value.
Yes: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8
No: 27.3, 30.1, 17.4, 29.5, 15.1

— Estimate mean and variance for each class

N N Hy,s =21.64, oy, =2.35
T R y e HY 2388, o =709
N n=1 Nn =1 No "7~ No |

Learning Phase: output two Gaussian models for P(temp|C)

. 1 (x—21.64)° 1 (x—21.64)°
P(x|Yes)= e

(xIYes) 2.35V27 ( 2x2.35° ] 2.35\27 [ 11.09
. 1 (x—23.88)° 1 (x—23.88)°
P(x| No) = e

(xINo) 7.09v27x L 2x7.09° ] 7.09v27x [ 50.25
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Probabilistic Classification

Establishing a probabilistic model for classification (cont.)
— Generative model (must be probabilistic)

P(xlc) c=c,, -, c;, x=(x,,++,x,)

L probabilistic models
P(xlc,) P(xlc,) have to be trained
Independently
« Each is trained on only the
examples of the same
label
3! 3! coeo 3! 35 3! coeo 3! « QOutput L probabilities for
b2 b2 " a given input with L
models
e “Generative” means that
such a model produces
data subject to the
20 distribution via sampling.




Probabilistic Classification

e Establishing a probabilistic model for classification
— Discriminative model

P(clx) c=c,, -, c;, x=(x,,+,x,)

P(c,1x) P(c, |x) P(c, 1x) * Train one discriminative classifier,
all training examples of different
classes must be jointly used to build
up a single discriminative classifier.

« Output L probability values for L
class labels in a probabilistic
classifier while a single label is
achieved by a non-probabilistic

X, X, X, classifier .
« Example: Logistic Regression, SVM,
X=(x,%,,,X,) etc.
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Bayes rule for probabilistic classifier

 The learner considers a set of candidate labels, and attempts to
find the most probable one y_Y, given the observed data.

« Such maximally probable assignment is called maximum a

posteriori assignment (MAP); Bayes theorem is used to compute
It:

Ymap = argmax, vy P(y|x) = argmax, ¢y P(x]y) P(y)/P(x)

= argmax, oy P(x|y) P(y)

Since P(x) is the same forally_.Y



Bayes Classifier

Maximum A Posterior (MAP) classification rule

For an input X, find the largest one from L probabilities
output by a discriminative probabilistic classifier

P(c, Ix), ..., P(c; 1x).
Assign x to label ¢* if P (c 1%) s the largest.

e (Generative classification with the MAP rule
— Apply Bayesian rule to convert them into posterior probabilities

P(Ci |X) _ P(x | Ci )P(Cz) oC P(X | Ci )P(CZ) e
P(X) ) forall L
for i=1,2,- L probabilities

— Then apply the MAP rule to assign a label



Nailve Bayes

e Bayes classification
P(c|x)o«c P(x]c)P(c) =P(x, -, X, |c)P(c) forc=c,...,C,.
Difficulty: learning the joint probability P(X, -+, X, | C) is infeasible!
e Naive Bayes classification
— Assume all input features are class conditionally independent!
P(x,,x,,,x, lc)=P(x,lx,,-,x,,0)P(x,,,x,1c)
Applying the < p(x. |¢)P(x,, -, x, | c)

Independenc
e assumption =P(x,lc)P(x,lc)---P(x, Ic)

Apply the MAP classification rule: assign x'=(a,,a,,--,a ) toc*
[P(ac) - P(a,|c)IP(C) > [P(a]c)---P(a, |0)]P(c), c=c,c=¢,\C

estimate of P(a,,---a_|c) esitmate of P(a,, -, a_|c)
24




Summary

* Naive Bayes: the conditional independence assumption

Training and test are very efficient

Two different data types lead to two different learning
algorithms

Working well sometimes for data violating the assumption!

* A popular generative model

Performance competitive to most of state-of-the-art classifiers
even in presence of violating independence assumption

Many successful applications, e.g., spam mail filtering
A good candidate of a base learner in ensemble learning
Apart from classification, naive Bayes can do more...
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