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TISSEC 2000. 
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Quiz 
1. A standard normal distribution has: 

(a) mean equal to the variance 
(b) mean equal 1 and variance equal 1 
(c) mean equal 0 and variance equal 1 
(d) mean equal 0 and standard deviation equal 0 
(e) none of these 

2. True or False: P(A and B) = P(A|B)P(B|A). 
3. True or False: If P(A|B) = P(A) then A and B are independent. 
4. A card is drawn at random from a deck of playing cards. If it is 

red, the player wins 1 dollar; if it is black, the player loses 2 
dollars. Find the expected value of the game. 

5. An urn contains eight balls, two are red and six white. Two 
balls are drawn at random with replacement. What is the 
probability that at least one of the balls drawn is red? 

6. What if two balls are drawn without replacement?  



Quiz 

1. A standard normal distribution has: 

(a) mean equal to the variance 

(b) mean equal 1 and variance equal 1 

(c) mean equal 0 and variance equal 1 

(d) mean equal 0 and standard deviation equal 0 

(e) none of these 

2. True or False: P(A and B) = P(A|B)P(B|A). 

3. True or False: If P(A|B) = P(A) then A and B are independent. 

4. A card is drawn at random from a deck of playing cards. If it is red, the player wins 1 
dollar; if it is black, the player loses 2 dollars. Find the expected value of the game. 
E = P(red)*1 + P(black)*(-2) = 1/2 - 1 = -1/2 

5. An urn contains eight balls, two are red and six white. Two balls are drawn at random 
with replacement. What is the probability that at least one of the balls drawn is red?  
1-P(two white) = 1 - (6/8)^2 = 1 - 9/16 = 7/16 

6. Without replacement, 1-P(two white) = 1 - (6/8)(5/7) = 1 - 15/28 = 13/28 

 



Probability basics 
• Basic notion: Random variable (RV) 

– A variable that can take one of a set of possible values 

– X refers to random variable; x refers to a value of that 
random variable 

• Types of random variables 
– Discrete RV has a finite set of possible values;  

Continuous RV can take any value within an interval  

– Boolean: e.g., Warning (will there be a storm warning? 
= <yes, no>) 

– Discrete: e.g., The weather tomorrow is one of 
<sunny,rainy,cloudy,snow> 

– Continuous: e.g., The average temperature tomorow 



Probability basics 

• Sample space (S) 

– Set of all possible outcomes of an experiment 

• Event 

– Any subset of outcomes contained in the sample 
space S 

– When events A and B have no outcomes in 
common they are said to be mutually exclusive 



Examples 

Random variable(s) 

One coin toss 

Two coin tosses 

Select one card  

Result of a chess game 

Inspect a part 

Cavity and toothache 

 Sample space 

 H, T 

 HH, HT, TH, TT 

 2, 2, ..., A (52) 

 Win, Lose, Draw 

 Defective, OK 

 TT, TF, FT, FF 



Axioms of probability 

• For a sample space S with possible events, a 
function that associates real values with each 
event A is called a probability function if the 
following properties are satisfied: 
1.0 ≤ P(A) ≤ 1   for every A 

2.P(S) = 1 

3.P(A1 ∨ A2  ... ∨ An) = P(A1) + P(A2) + ... + P(An)     
 
if A1, A2, ..., An  are pairwise mutually exclusive events 
 



Implications of axioms 

• For any events A, B 

– P(A) = 1 - P(¬A)  

– P(true) = 1   and   P(false) = 0 

– If A and B are mutually exclusive then P(A ∧ B) = 0 

– P(A ∨ B) = P(A) + P(B) - P(A ∧ B) 
 



Permutations and combinations 

• An ordered sequence of k objects taken from a 
set of n distinct objects without replacement, is 
called a permutation of size k  
– The number of permutations of size k that can be 

constructed from the n objects is: 
 

• An unordered sequence of k objects taken from a 
set of n distinct objects without replacement, is 
called a combination of size k  
– The number of combinations of size k that can be 

constructed from the n objects is: 



Example 

• An urn contains ten balls, six of which are red and four of 
which are white.  
Five balls are drawn at random (without replacement).  
What is the probability of drawing three red and two white 
balls? 
 
 
 
 
 

• An urn contains five balls, numbered from 1 to 5. Three 
balls are drawn at random. What is the probability that we 
draw the sequence 3, 4, 1?  



Joint probability 

• Joint probability distribution for a set of random variables 
gives the probability of every atomic event on those 
random variables: 
E.g., P(Weather, Warning) = a 4 × 2 matrix of values: 

 

 

 

• Every question about events can be answered by the joint 
distribution 
 Under what weather condition, is there most likely to 

have a warning? 
If there is a warning, what is the most likely weather? 



Conditional probability 

• Conditional (or posterior) probability: 
– e.g., P( warning=Y | snow=T ) = 0.4 
– Complete conditional distributions specify 

conditional probability for all possible 
combinations of a set of RVs: 
P( warning | snow ) = 
 {  P( warning = Y | snow = T ),   
  P( warning = N | snow = T ), } 
 { P( warning = Y | snow = F ),   
  P( warning = N | snow = F )  } 

• If we know more, then we can update the 
probability by conditioning on more evidence 
– e.g., if Windy is also given then P( warning | snow, 

windy ) = 0.5 



Conditional probability 

• Definition of conditional probability: 

 

 

• Product rule gives an alternative formulation: 

 

 

• Bayes rule uses the product rule: 



Example 

• Conditional probability: 

 

 

• Example: What is P( sunny | warning = Y )? 



• Chain rule is derived by successive application 
of product rule: 

Conditional probability 



The Monty Hall Problem (1) 

A popular game show is played as follows. A stage 
has three curtains. Behind one curtain (chosen at 
random by the show's host) is a brand-new car. 
Behind each of the other two curtains is a goat. The 
contestant chooses one of the curtains. The host 
then opens one of the other curtains, exposing a 
goat. The contestant is now given the opportunity to 
switch to the other unopened curtain, or keep the 
one that he originally chose. Should he switch? 

 



The Monty Hall Problem (2) 

• Answer: Yes. 

– Probability of winning if not switching: 1/3 

– Probability of winning if switching: 1-1/3=2/3 

• Variant:  Suppose there are 10 curtains with 1 
car and 9 goats. After the initial selection, the 
host reveals 5 of the goats. What's the 
probability of winning if the contestant 
switches? 

 



The Monty Hall Problem (3) 

• Variant:  Suppose there are 10 curtains with 1 
car and 9 goats. After the initial selection, the 
host reveals 5 of the goats. What's the 
probability of winning if the contestant 
switches? 
– Now switching has winning the probability 1/10. 

– The total probability of winning of switching to any of 
the 4 curtains is 9/10. 

– These 4 curtains are equally likely, thus each has 
probability 9/40. 



The Base Rate Fallacy 

• Taxi-cab problem (Tversky & Kahneman ‘72) 

– 85% of the cabs are Green 

– 15% of the cabs are Blue 

– An accident eyewitness reports a Blue cab 

– But she is wrong 20% of the time. 

• What is the probability that the cab is Blue? 

– Participants tend to overestimate probability, most 
answer 80% 

– They ignore baseline prior probability of blue cabs. 



More on neglecting base rates 



More on neglecting base rates 



Base Rate Fallacy 

• How to compute probability 

Most people answered 80% 



Medical Test 
• In the 1980’s in the US, a HIV test was used that 

had the following properties: 
There were 4% false positives 
There were 100% true positives 

 

• About 0.4% of the male population was HIV 
positive 

 

• If a man tested HIV positive, what is the 
probability he is actually HIV positive? 



Representation 
• P( positive  | no HIV ) = .04           (4% false positives) 

• P( positive  |      HIV ) = 1              (100% true positives) 

• P( HIV ) = .004       (0.4% HIV positive rate) 

 

•  want:  P( HIV | positive ) = ? 

Positive 
  

 
Negative 

HIV    no HIV 

P( positive | HIV)P( HIV ) P(positive | noHIV )P( noHIV ) 

 

P( negative | HIV)P( HIV ) P(negative | noHIV )P( noHIV) 

 



Representation 
• P( positive  | no HIV ) = .04           (4% false positives) 

• P( positive  |      HIV ) = 1              (100% true positives) 

• P( HIV ) = .004      (0.4% HIV positive rate) 

 

•  want:  P( HIV | positive ) = ? 

Positive  
 
 

Negative 

HIV    no HIV 

P( positive | HIV)P( HIV )= P(positive | noHIV )P( noHIV )= 

   (1)(.004) = .004      (.04)(.996) = .03984 

P( negative | HIV)P( HIV )= P(negative | noHIV )P( noHIV)= 

   (0)(.004) = 0      (.96)(.996) = .95616 



Solution 
 

•  P( HIV | positive ) = .004 / ( .004 + .03984 )  
    = .091 

Positive  
 
 

Negative 

HIV    no HIV 

P( positive | HIV)P( HIV )= P(positive | noHIV )P( noHIV )= 

   (1)(.004) = .004      (.04)(.996) = .03984 

P( negative | HIV)P( HIV )= P(negative | noHIV )P( noHIV)= 

   (0)(.004) = 0      (.96)(.996) = .95616 



The Prosecutor’s Fallacy 

• A person's DNA matches that of a sample 
found at a crime scene. The chances of a DNA 
match are just one in two million, so the 
person must be guilty beyond a reasonable 
doubt, right? 



The Prosecutor’s Fallacy (2) 

• It depends on whether DNA is the only 
evidence and why the DNA is collected.  
Consider two cases: 

• There are 5 suspects, and their DNAs are 
collected and tested, this person is found to 
be a match.  

• The crime scene DNA is compared with a 
database of DNA’s and a match is found.  

 



The Sally Clark Case (1) 

• Sally Clark, a British woman, was accused in 1998 
of having killed her first child at 11 weeks of age 
and then her second child at 8 weeks of age. The 
prosecution had expert witness Sir Roy Meadow, 
a professor and consultant pediatrician, testify 
that the probability of two children in the same 
family dying from Sudden Infant Death Syndrome 
(SIDS) is about 1 in 73 million.  
– Meadow's (now discredited) law: "one sudden infant 

death in a family is a tragedy, two is suspicious and 
three is murder unless proven otherwise" 

Do you think Sally Clark is guilty?  What question 
should you ask? 



The Sally Clark Case (2) 

• Meadow had arrived at the 1 in 73 million figure 
erroneously by squaring 1 in 8500, as being the 
likelihood of a cot death in similar circumstances. 
The Royal Statistical Society later issued a 
statement arguing that there was "no statistical 
basis" for Meadow's claim, and expressing its 
concern at the "misuse of statistics in the courts“ 

• Suppose that the probability is 1 in 5 million, what 
else do we need to know to help judge whether 
Sally Clark is likely to be guity?  

https://en.wikipedia.org/wiki/Royal_Statistical_Society


The Sally Clark Case (3) 

• The number 1 in 5 million should not be interpreted as the 
probability that Sally is innocent. 

• Another statistics, in the UK more than 200 babies dies of 
SIDS every year. 

• It is found that “After a first cot death the chances of a 
second become greatly increased", by a dependency factor 
of between 5 and 10. 

• Would another statistics necessary/helpful? 
• Would be helpful to know the base rate of infant death due 

to guilty parent.  The probability that double infant murder is 
very low. 

• Prof. Ray Hill of Stanford calculated the odds ratio for double 
SIDS to double homicide at between 4.5:1 and 9:1 



What Happened to Clark? 

Clark was convicted in 1999 and sentenced to life . 
The convictions were upheld on appeal in 2000, but 
overturned in a second appeal in January 2003, 
after it emerged that Dr Alan Williams, the 
prosecution forensic pathologist who examined 
both of her babies, had incompetently failed to 
disclose microbiological reports that suggested the 
second of her sons had died of natural causes. She 
was released from prison having served more than 
three years of her sentence.  



What Happened to Clark? 

Journalist Geoffrey Wansell called Clark's 
experience "one of the great miscarriages of 
justice in modern British legal history".  As a 
result of her case, the Attorney-General ordered 
a review of hundreds of other cases, and two 
other women had their convictions overturned. 



Base Rate Fallacy in Intrusion Detection 

• Assumptions in the hypothesized system:  
– Few tens of workstations running UNIX  

– Few servers running UNIX  

– Couple of dozen users 

– Capable of generating 1,000,000 audit records per day 
(with C2 compliant logging)  

– Single site security officer (SSO)  

– 10 audit records affected in the average intrusion  

– 2 intrusions per day => 20 records per 1,000,000 
account to actual intrusions 

Stefan Axelsson. The Base-Rate Fallacy and the Difficulty of 
Intrusion Detection.  ACM TISSEC. 2000. 



Base Rate Fallacy in Intrusion Detection 
(Continued) 

• Let us use the following notation 
– I:  an audit record is due to Intrusive behavior  
– A:  an audit record triggers an alarm  

• With the assumptions on previous slide, what is P(I) and P( 
¬I)? 
– P(I) = 2⋅10-5 ;    P( ¬I) = 1 – P(I) = 0.99998  

• We typically use the following to measure the degree of 
correctness of an intrusion detection system 
– Detection rate or True positive rate:  P(A|I)  
– False alarm rate:    P(A| ¬I)  

• Suppose P(A|I)=0.99 and P(A|¬I)=0.01.  Is this good 
enough?  What do we need to compute? 

• We need to compute the Bayesian Detection Rate: 
– P(I|A) , P( ¬I| ¬A) 

• What are they under the above assumption? 



Base Rate Fallacy in Intrusion Detection 
(Continued) 

• For P(A|I)=0.99, P(A| ¬I)=0.01, we get   

 Pr 𝐼 𝐴 =  
Pr 𝐼 Pr [𝐴|𝐼]

Pr [𝐴]
=

2×10−5×0.99

2×10−5×0.99+(1−2×10−5)×0.01
≈

1.98×10−5

1.98×10−5+0.01
≈ 0.00198 

• What values do we need For P(A|I) and P(A| ¬I) to be to 
have effective intrusion detection? 

• For P(A|I)=1, P(A| ¬I)=1⋅10-5, we get P(I|A) as 0.66  
• For P(A|I)=0.7, P(A| ¬I)=1⋅10-5, we get P(I|A) as 0.58  
• Even for large detection rate, viz. P(A|I), Bayesian 

detection rate is dominated by the factor of false alarm 
rate, viz. factor of P(A| ¬I)  

• P(I|A) close to 50% will induce SSO to ignore all (or most) 
of the alarms generated 



Base Rate Fallacy in Intrusion Detection 
(Lessons) 

• Intrusion detection is difficult in real world  

• The “effectiveness” of an intrusion detection 
system depends not just on its ability to detect 
intrusive behavior but on its ability to suppress 
false alarms  

• Comparison shows anomaly-based detection 
methods have larger false alarm rates than 
signature-based detection, but signature-based 
detection methods cannot provide protection 
against novel intrusions 



Marginal probability 

• Marginal (or unconditional) probability 
corresponds to belief that event will occur 
regardless of conditioning events 

• Marginalization: 

 

• Example: What is P( cloudy )? 



Independence 

• A and B are independent iff: 
– P(A|B) = P(A)       or       P(B|A) = P(B)        

         or       P(A, B) = P(A) P(B) 

– Knowing B tells you nothing about A 

• Examples 
– Coin flip 1 and coin flip 2?  

– Weather and storm warning? 

– Weather and coin flip=H? 

– Weather and election? 



Conditional independence 

• Two variables A and B are conditionally 
independent given Z 
iff for all values of A, B, Z:  
                         P(A, B | Z) = P( A | Z ) P( B | Z ) 

 

• Note: independence does not imply 
conditional independence or vice versa 



Example 1 

• Conditional independence does not imply 
independence  

• Gender and lung cancer are not independent  
  P(C | G) ≠ P(C) 
 

• Gender and lung cancer are conditionally 
independent given smoking 
  P(C | G, S) = P(C | S) 
 

• Why? Because gender indicates likelihood of 
smoking, and smoking causes cancer 



Example 2 
• Independence does not imply conditional 

independence  

• Sprinkler-on and raining are independent 
  P(S | R) = P(S) 
 

• Sprinkler-on and raining are not conditionally 
independent given  
grass is wet 
  P(S | R, W) ≠ P(S | R) 
 

• Why? Because once we know the grass is wet, if it’s 
not raining, then the explanation for the grass being 
wet has to be the sprinkler 



Example 

•You flip a fair coin twice 

1. The first flip is heads 

2. The second flip is tails 

3. The two flips are not the same 

•Are (1) and (2):  independent? Conditionally 
independent given (3)? Neither? 

 



• Probability distribution (i.e., probability mass 
function or probability density function) specifies 
the probability of observing every possible value 
of a random variable 

• Discrete (probability mass function) 
– Denotes probability that X will take on a particular 

value: 
 

• Continuous (probability density function) 
– Probability of any particular point is 0, have to 

consider probability within an interval: 

Probability distribution 



Example 

• Let X be a random variable that represents 
the number of heads which appear when a 
fair coin is tossed three times. 

• X = {0, 1, 2, 3} 

• P(X=0) = 1/8; P(X=1) = 3/8; P(X=2) = 3/8; 
P(X=3) = 1/8 

• What is the expected value of X, E[X]? 



Expectation 

• Denotes the expected value or mean value of a 
random variable X 

• Discrete 

• Continuous 

• Expectation of a function 

This holds whether X and Y are independent or not! 



Proof of Linearity  of Expectation 



An Example Problem 

• I have 12 addressed letters to mail, and 12 
corresponding pre-addressed envelopes. For 
some wacky reason, I decide to put the letters 
into the envelopes at random, one letter per 
envelope. What is the expected number of 
letters that get placed into their proper 
envelopes? 
– Let 𝑋𝑖 denote the event that the i-th letter is put in 

the right envelope.  Then Pr 𝑋𝑖 = 1 = 1
12 .  Thus 

𝐸  𝑋𝑖
12
𝑖=1 =  𝐸[𝑋𝑖]

12
𝑖=1 = 12 × 1

12 = 1 



Variance 

• Denotes the expectation of the  squared deviation of X from its 
mean 

• Variance 

• Standard deviation  

• Variance of a function 



Example 

• Let X be a random variable that represents 
the number of heads which appear when a 
fair coin is tossed three times. 

• X = {0, 1, 2, 3} 

• What is the variance of X, Var(X)? 



Common distributions 

• Bernoulli 

• Binomial 

• Multinomial 

• Poisson  

• Normal 



Bernoulli 

• Binary variable (0/1) that takes the value of 1 with 
probability p 

– E.g., Outcome of a fair coin toss is Bernoulli with p=0.5 



Binomial 

• Describes the number of successful 
outcomes in n independent Bernoulli(p) trials  
– E.g., Number of heads in a sequence of 10 tosses 

of a fair coin is Binomial with n=10 and p=0.5 



Multinomial 

• Generalization of binomial to k possible outcomes; 
outcome i has probability pi of occurring  
– E.g., Number of {outs, singles, doubles, triples, homeruns} in 

a sequence of 10 times at bat is Multinomial 

• Let Xi denote the number of times the i-th outcome 
occurs in n trials: 



Normal (Gaussian) 

• Important 
distribution gives 
well-known bell 
shape 

• Central limit theorem:  

Distribution of the mean of n samples 

becomes normally distributed as n ↑, 

regardless of the distribution of the 

underlying population 



Multivariate RV 

• A multivariate random variable X is a set X1, X2, ..., 
Xp of random variables 

• Joint density function: P(x)=P(x1, x2, ..., xp) 
• Marginal density function: the density of any 

subset of the complete set of variables, e.g.,: 
 
 
 
Conditional density function: the density of a 
subset conditioned on particular values of the 
others, e.g.,: 



Frequentist view of Probability 

• Dominant perspective for last century 

• Probability is an objective concept 

– Defined as the frequency of an event occurring 
under repeated trials in “same” situation 

– E.g., number of heads in repeated coin tosses 

• Restricts application of probability to 
repeatable events  



Bayesian view 

• Increasing importance over last decade 
– Due to increase in computational power that 

facilitates previously intractable calculations 

• Probability is a subjective concept 
– Defined as individual degree-of-belief that event 

will occur 

– E.g., belief that we will have another snow storm 
tomorrow 

• Begin with prior belief estimates and update 
those by conditioning on observed data  



Calculating probabilities: Bayesian  

• Begin with prior belief estimates: P(A) 

– E.g., After the Seahawks won their conference, Vegas casinos believed 
the Seahawks were likely to win the Superbowl over the Patriots: 
       P(S wins)=0.525, P(P wins)=0.475 

• Observe data 

– But then Vegas observed a heavy majority of the betters (80%) chose 
the Patriots, which is unlikely given their current belief 

• Update belief by conditioning on observed data  
P(A|data) = P(data|A) P(A) / P(data) 

– So they updated their belief to increase the the Patriots’s chance of a 
win: 
       P(S wins | betting) = P(betting | S wins) P(S wins) / P(betting) = 0.50 

• Even when the same data is observed, if people have different 
priors, they can end up with different posterior probability 
estimates P(A|data) 


