
Security Analytics

Topic 6: Perceptron and Support
Vector Machine

Purdue University
Prof. Ninghui Li

Based on slides by Prof. Jenifer Neville and
Chris Clifton

Readings

• Principle of Data Mining

– Chapter 10: Predictive Modeling for Classification

• 10.3 Perceptron

PERCENTRON

Input signals sent

from other neurons

If enough

sufficient signals

accumulate, the

neuron fires a

signal.

Connection strengths

determine how the

signals are

accumulated

1x

2x

3x

add

)(taif 

1output output
signal

• input signals ‘x’ and coefficients ‘w’ are multiplied

• weights correspond to connection strengths

• signals are added up – if they are enough, FIRE!

else
0output

1w

2w

3w

i

M

i

iwxa 



1

incoming

signal

connection

strength
activation

level

output

signal

Sum notation

(just like a loop from 1 to M)

double[] x =

double[] w =

Multiple corresponding

elements and add them up

a

if (activation > threshold) FIRE !

(activation)

i

M

i

iwxa 



1

Calculation…

t
if 0 else ,1 then  outputoutput











i

M

i

iwx
1

The Perceptron Decision Rule

output = 1
output = 0

t
if

0 else ,1 then  outputoutput










i

M

i

iwx
1

Rugby player = 1

Ballet dancer = 0

Decision

boundary

Is this a good decision boundary?

t
if

0 else ,1 then  outputoutput










i

M

i

iwx
1

w1 = 1.0

w2 = 0.2

t = 0.05

t
if

0 else ,1 then  outputoutput










i

M

i

iwx
1

w1 = 2.1

w2 = 0.2

t = 0.05

t
if

0 else ,1 then  outputoutput










i

M

i

iwx
1

w1 = 1.9

w2 = 0.02

t = 0.05

t
if

0 else ,1 then  outputoutput










i

M

i

iwx
1

Changing the weights/threshold makes the decision boundary move.

Pointless / impossible to do it by hand – only ok for simple 2-D case.

We need an algorithm….

w1 = 0.8

w2 = -0.03

t = 0.05

] 5.0 ,5.0 ,2.0 [w

] 0.2 ,5.0 ,0.1 [x

0.1t

w1

w2

w3

x1

x2

x3





M

i

iiwxa
1

w1

w2

w3

x1

x2

x3





M

i

iiwxa
1

45.1)5.00.2()5.05.0()2.00.1(
1




M

i

iiwxa

Q1. What is the activation, a, of the neuron?

Q2. Does the neuron fire?

if (activation > threshold) output=1 else output=0

 …. So yes, it fires.

] 5.0 ,5.0 ,2.0 [w

] 0.2 ,5.0 ,0.1 [x

0.1t

w1

w2

w3

x1

x2

x3





M

i

iiwxa
1

w1

w2

w3

x1

x2

x3





M

i

iiwxa
1

45.0)0.00.2()5.05.0()2.00.1(
1




M

i

iiwxa

Q3. What if we set threshold at 0.5 and weight #3 to zero?

if (activation > threshold) output=1 else output=0

 …. So no, it does not fire..

The Perceptron

error)tion classifica (a.k.a. mistakes ofNumber Error function

height

weight

Model

Learning algo. values... and theoptimise toneed ??? tw

0

1





"dancer"

"player"
0ŷ else 1 ŷ then if

1




txw i

d

i

i

Perceptron Learning Rule

new weight = old weight + 0.1 (trueLabel – output) input 

if… (target = 0, output = 0) …. then update = ?

if… (target = 0, output = 1) …. then update = ?

if… (target = 1, output = 0) …. then update = ?

if… (target = 1, output = 1) …. then update = ?



What weight updates do these cases produce?

update

initialise weights to random numbers in range -1 to +1

for n = 1 to NUM_ITERATIONS

 for each training example (x,y)

 calculate activation

 for each weight

 update weight by learning rule

 end

 end

end

Perceptron convergence theorem:

If the data is linearly separable, then application of the Perceptron learning

rule will find a separating decision boundary, within a finite number of

iterations

Learning algorithm for the Perceptron

Model

(if… then…)

Testing Data
(no labels)

Training data

Predicted Labels

Learning algorithm
(search for good

parameters)

Supervised Learning Pipeline for Perceptron

New data…. “non-linearly separable”

height

weight

Our model does not match

the problem!

(AGAIN!)

Many mistakes!

dancer"" else player"" then if
1

txw i

d

i

i 


One Approach: Multilayer Perceptron

x1

x2

x3

x4

x5

Another Approach: Sigmoid activation – no more

thresholds needed 

1

i

d

i

i xw


levelactivation

0ŷ else 1 ŷ then if
1




txw i

d

i

i

) exp(1

1

1

i

d

i

i xw

a








MLP decision boundary – nonlinear problems, solved!

height

weight

Neural Networks - summary

Perceptrons are a (simple) emulation of a neuron.

Layering perceptrons gives you… a multilayer perceptron.

An MLP is one type of neural network – there are others.

An MLP with sigmoid activation functions can solve highly nonlinear

problems.

Downside – we cannot use the simple perceptron learning algorithm.

Instead we have the “backpropagation” algorithm.

We will cover this later.

Perceptron Revisited: Linear
Separators

• Binary classification can be viewed as the task of
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

SEE SLIDES FOR SVM

