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Readings 

• Principle of Data Mining 

– Chapter 10: Predictive Modeling for Classification 

• 10.3 Perceptron 

 



PERCENTRON 



Input signals sent 

from other neurons 

If enough 

sufficient signals 

accumulate, the 

neuron fires a 

signal. 

Connection strengths 

determine how the 

signals are 

accumulated 
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• input signals ‘x’ and coefficients ‘w’ are multiplied 

• weights correspond to connection strengths 

• signals are added up – if they are enough, FIRE! 
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Sum notation 

(just like a loop from 1 to M) 

double[] x = 

double[] w = 

Multiple corresponding 

elements and add them up 
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if (activation > threshold)  FIRE !   

(activation) 

i

M

i

iwxa 



1

Calculation… 
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The Perceptron Decision Rule 
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Rugby player  =  1 

Ballet dancer  =  0 

 

Decision 

boundary 



Is this a good decision boundary? 
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w1 = 1.0 

  

w2 = 0.2 

 

t = 0.05 

t
if 

0 else  ,1 then  outputoutput










i

M

i

iwx
1



w1 = 2.1 

  

w2 = 0.2 

 

t = 0.05 
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w1 = 1.9 

  

w2 = 0.02 

 

t = 0.05 
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Changing the weights/threshold makes the decision boundary move. 

 

Pointless / impossible to do it by hand – only ok for simple 2-D case. 

 

We need an algorithm…. 

w1 = 0.8 

  

w2 = -0.03 

 

t = 0.05 
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Q1. What is the activation, a, of the neuron? 

Q2. Does the neuron fire? 

if (activation > threshold)  output=1 else output=0 

      …. So yes, it fires.   
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Q3. What if we set threshold at 0.5 and weight #3 to zero? 

if (activation > threshold)  output=1 else output=0 

      …. So no, it does not fire..   



The Perceptron 
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Perceptron Learning Rule 

new weight = old weight +    0.1    ( trueLabel – output )     input  

if… ( target = 0,   output = 0 ) …. then update  = ? 

if… ( target = 0,   output = 1 ) …. then update  = ? 

if… ( target = 1,   output = 0 ) …. then update  = ? 

if… ( target = 1,   output = 1 ) …. then update  = ? 

 



What weight updates do these cases produce? 

update 



initialise weights to random numbers in range -1 to +1 

for n = 1 to NUM_ITERATIONS 

 for each training example (x,y) 

  calculate activation 

  for each weight 

   update weight by learning rule 

  end 

 end 

end 

Perceptron convergence theorem: 

If the data is linearly separable, then application of the Perceptron learning 

rule will find a separating decision boundary, within a finite number of 

iterations 

Learning algorithm for the Perceptron 



Model 

(if… then…) 

Testing Data 
(no labels) 

Training data 

Predicted Labels 

Learning algorithm 
(search for good 

parameters) 

Supervised Learning Pipeline for Perceptron 



New data…. “non-linearly separable” 

height 

weight 

Our model does not match 

the problem! 

 

(AGAIN!) 

Many mistakes! 
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One Approach: Multilayer Perceptron 

x1 

x2 

x3 

x4 

x5 



Another Approach: Sigmoid activation – no more 

thresholds needed  
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MLP decision boundary – nonlinear problems, solved! 
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weight 



Neural Networks - summary 

Perceptrons are a (simple) emulation of a neuron. 

 

Layering perceptrons gives you… a multilayer perceptron. 

An MLP is one type of neural network – there are others. 
 

An MLP with sigmoid activation functions can solve highly nonlinear 

problems. 

 

Downside – we cannot use the simple perceptron learning algorithm. 
 

Instead we have the “backpropagation” algorithm. 

  

We will cover this later. 



Perceptron Revisited:  Linear 
Separators  

• Binary classification can be viewed as the task of 
separating classes in feature space: 

wTx + b = 0 

wTx + b < 0 
wTx + b > 0 

f(x) = sign(wTx + b) 



SEE SLIDES FOR SVM 


