#### Security Analytics

#### Topic 5: Probabilistic Classification Models: Naïve Bayes

Purdue University Prof. Ninghui Li Based on slides by Prof. Jenifer Neville and Chris Clifton

# Readings

- Principle of Data Mining
  - Chapter 10: Predictive Modeling for Classification
    - 10.8 The Naïve Bayes Model
- From Speech and Language Processing. Daniel Jurafsky & James H. Martin
  - Chapter 6: Naive Bayes and Sentiment
     Classification
  - https://web.stanford.edu/~jurafsky/slp3/6.pdf

# The Classification Problem

- Given input **x**, the goal is to predict *y*, which is a categorical variable
  - y is called the class label
  - x is the feature vector
- Example:
  - x: monthly income and bank saving amount;
     y: risky or not risky
  - **x**: bag-of-words representation of an email;
     y: spam or not spam

# **Precision and Recall**

- Given a dataset, we train a classifier that gets 99% accuracy
- Did we do a good job?
- Build a classifier for brain tumor:
  - 99.9% of brain scans do not show signs of tumor
  - Did we do a good job?
- By simply saying "NO" to all examples we reduce the error by a factor of 10!
  - Clearly Accuracy is not the best way to evaluate the learning system when the data is heavily skewed!
- Intuition: we need a measure that captures the class we care about! (rare)

### **Precision and Recall**

• The learner can make two kinds of mistakes:

| <ul> <li>False Positive</li> <li>False Negative</li> </ul> |                           |                             | Tr <mark>q</mark> e Label                         | <mark>၂</mark> ၀၀ Label |
|------------------------------------------------------------|---------------------------|-----------------------------|---------------------------------------------------|-------------------------|
|                                                            |                           | Predicted                   | True<br>Positive                                  | False<br>Positive       |
|                                                            |                           | Predicted                   | False<br>Negative                                 | True<br>Negative        |
| <b>Precision</b> :                                         | True Pos<br>Predicted Pos | $r = \frac{1}{\text{True}}$ | $\frac{\text{True Pos}}{\text{Pos} + \text{Fal}}$ | se Pos                  |

- "when we predicted the rare class, how often are we right?"
- **Recall**  $\frac{\text{True Pos}}{\text{Actual Pos}} = \frac{\text{True Pos}}{\text{True Pos} + \text{False Neg}}$
- "Out of all the instances of the rare class, how many did we catch?"

# **Precision and Recall**

• Precision and Recall give us two reference points to compare learning performance

|                | Precision | Recall |
|----------------|-----------|--------|
| Algorithm<br>1 | 0.5       | 0.4    |
| Algorithm<br>2 | 0.7       | 0.1    |
| Algorithm<br>3 | 0.02      | 1      |

- Which algorithm is better?
- Option 1: Average
- Option 2: F-Score



#### We need a single score

#### **Properties of f-score:**

- Ranges between 0-1
- Prefers precision and recall with similar values

### NAÏVE BAYES CLASSIFIER

#### • Example: Play Tennis

#### *PlayTennis*: training examples

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

# **Probabilistic Classification**

• Establishing a probabilistic model for classification

**Discriminative model** 

$$P(c \mid \mathbf{x}) \quad c = c_1, \cdots, c_L, \mathbf{x} = (x_1, \cdots, x_n)$$

9

$$\begin{array}{ccc} P(c_1 \mid \mathbf{x}) & P(c_2 \mid \mathbf{x}) \\ \uparrow & \uparrow & \bullet \bullet \bullet & \uparrow \\ \end{array}$$

$$\begin{array}{c} \uparrow & \uparrow \\ x_1 & x_2 \\ \mathbf{x}_1 & x_2 \\ \mathbf{x}_2 & \ddots \\ \mathbf{x}_n \\ \mathbf{x} = (x_1, x_2, \cdots, x_n) \end{array}$$

- To train a discriminative classifier regardless its probabilistic or non-probabilistic nature, all training examples of different classes must be jointly used to build up a single discriminative classifier.
- Output *L* probabilities for *L* class labels in a probabilistic classifier while a single label is achieved by a non-probabilistic classifier.
- Example: Logistic Regression, SVM, etc.

# **Probabilistic Classification**

Establishing a probabilistic model for classification (cont.)

- Generative model (must be probabilistic)

$$P(\mathbf{x} \mid c) \quad c = c_1, \dots, c_L, \mathbf{x} = (x_1, \dots, x_n)$$

$$P(\mathbf{x} \mid c_1) \quad P(\mathbf{x} \mid c_L)$$

$$Generative$$

$$Probabilistic Model$$

$$for Class 1 \quad \dots \quad Generative$$

$$Probabilistic Model$$

$$for Class L$$

$$\widehat{\mathbf{x}}_1 \quad \widehat{\mathbf{x}}_2 \quad \dots \quad \widehat{\mathbf{x}}_n \quad \widehat{\mathbf{x}}_1 \quad \widehat{\mathbf{x}}_2 \quad \dots \quad \widehat{\mathbf{x}}_n$$

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

- *L* probabilistic models have to be trained independently
- Each is trained on only the examples of the same label
- Output *L* probabilities for a given input with *L* models
- "Generative" means that such a model produces data subject to the

distribution via sampling.

#### Bayes rule for probabilistic classifier

- The learner considers a set of <u>candidate labels</u>, and attempts to find <u>the most probable</u> one y<sub>e</sub>Y, given the observed data.
- Such maximally probable assignment is called <u>maximum a</u> <u>posteriori</u> assignment (<u>MAP</u>); Bayes theorem is used to compute it:

 $y_{MAP} = \operatorname{argmax}_{y \in Y} P(y|x) = \operatorname{argmax}_{y \in Y} P(x|y) P(y)/P(x)$  $= \operatorname{argmax}_{y \in Y} P(x|y) P(y)$ 

Since P(x) is the same for all  $y_{\epsilon}$  Y

# **Bayes Classifier**

Maximum A Posterior (MAP) classification rule

For an input x, find the largest one from L probabilities output by a discriminative probabilistic classifier

$$P(c_1 \mid \mathbf{x}), ..., P(c_L \mid \mathbf{x}).$$

Assign x to label  $c^*$  if  $P(c^* | \mathbf{x})$  is the largest.

- Generative classification with the MAP rule
  - Apply Bayesian rule to convert them into posterior probabilities

$$P(c_i | \mathbf{x}) = \frac{P(\mathbf{x} | c_i)P(c_i)}{P(\mathbf{x})} \propto P(\mathbf{x} | c_i)P(c_i)$$
  
for  $i = 1, 2, \dots, L$   
$$Common factor for all L probabilities$$

- Then apply the MAP rule to assign a label

### Naïve Bayes

Bayes classification

 $P(c|\mathbf{x}) \propto P(\mathbf{x}/c)P(c) = P(x_1, \dots, x_n | c)P(c)$  for  $c = c_1, \dots, c_L$ .

Difficulty: learning the joint probability  $P(x_1, \dots, x_n \mid c)$  is infeasible!

- Naïve Bayes classification
- Assume all input features are class conditionally independent!

$$P(x_1, x_2, \dots, x_n \mid c) = P(x_1 \mid x_2, \dots, x_n, c)P(x_2, \dots, x_n \mid c)$$
  
Applying the independenc e assumption 
$$P(x_1 \mid c)P(x_2, \dots, x_n \mid c)$$
$$= P(x_1 \mid c)P(x_2 \mid c) \dots P(x_n \mid c)$$

- Apply the MAP classification rule: assign  $\mathbf{x}' = (a_1, a_2, \dots, a_n)$  to  $c^*$ 

 $[P(a_1 | c^*) \cdots P(a_n | c^*)]P(c^*) > [P(a_1 | c) \cdots P(a_n | c)]P(c), \quad c \neq c^*, c = c_1, \cdots, c_L$ 

estimate of  $P(a_1, \dots, a_n | c^*)$ 

esitmate of  $P(a_1, \dots, a_n | c)$ 

### Naïve Bayes

- Algorithm: Discrete-Valued Features
  - Learning Phase: Given a training set S of F features and L classes,

For each target value of  $c_i (c_i = c_1, \dots, c_L)$   $\hat{P}(c_i) \leftarrow \text{estimate } P(c_i) \text{ with examples in S;}$ For every feature value  $x_{jk}$  of each feature  $x_j (j = 1, \dots, F; k = 1, \dots, N_j)$  $\hat{P}(x_j = x_{jk} | c_i) \leftarrow \text{estimate } P(x_{jk} | c_i) \text{ with examples in S;}$ 

Output: F \* L conditional probabilistic (generative) models

- Test Phase: Given an unknown instance  $\mathbf{x}' = (a'_1, \dots, a'_n)$ "Look up tables" to assign the label  $c^*$  to  $\mathbf{X}'$  if  $[\hat{P}(a'_1 | c^*) \cdots \hat{P}(a'_n | c^*)]\hat{P}(c^*) > [\hat{P}(a'_1 | c_i) \cdots \hat{P}(a'_n | c_i)]\hat{P}(c_i), \ c_i \neq c^*, c_i = c_1, \dots, c_L$ 

#### • Example: Play Tennis

#### *PlayTennis*: training examples

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

#### • Learning Phase

| Outlook  | Play=Yes | Play=No | Temperature | Play=Yes | Play=No |
|----------|----------|---------|-------------|----------|---------|
| Sunny    | 2/9      | 3/5     | Hot         | 2/9      | 2/5     |
| Overcast | 4/9      | 0/5     | Mild        | 4/9      | 2/5     |
| Rain     | 3/9      | 2/5     | Cool        | 3/9      | 1/5     |

| Humidity | Play=Yes | Play=No |
|----------|----------|---------|
| High     | 3/9      | 4/5     |
| Normal   | 6/9      | 1/5     |

| Wind   | Play=Yes | Play=No |
|--------|----------|---------|
| Strong | 3/9      | 3/5     |
| Weak   | 6/9      | 2/5     |

P(Play=Yes) = 9/14 P(Play=No) = 5/14

#### • Test Phase

#### - Given a new instance, predict its label

**x**'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

#### - Look up tables achieved in the learning phrase

P(Outlook=Sunny | Play=Yes) = 2/9 P(Outlook=Sunny | Play=No) = 3/5 P(Temperature=Cool | Play=Yes) = 3/9 P(Temperature=Cool | Play==No) = 1/5 P(Huminity=High | Play=Yes) = 3/9 P(Huminity=High | Play=No) = 4/5 P(Wind=Strong | Play=Yes) = 3/9 P(Wind=Strong | Play=No) = 3/5 P(Play=Yes) = 9/14 P(Play=No) = 5/14

#### - Decision making with the MAP rule

$$\begin{split} \mathbf{P}(Yes \mid \mathbf{X}') &\approx [\mathbf{P}(Sunny \mid Yes) \mathbf{P}(Cool \mid Yes) \mathbf{P}(High \mid Yes) \mathbf{P}(Strong \mid Yes)] \mathbf{P}(\text{Play}=Yes) = 0.0053 \\ \mathbf{P}(No \mid \mathbf{X}') &\approx [\mathbf{P}(Sunny \mid No) \ \mathbf{P}(Cool \mid No) \mathbf{P}(High \mid No) \mathbf{P}(Strong \mid No)] \mathbf{P}(\text{Play}=No) = 0.0206 \end{split}$$

Given the fact  $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$ , we label  $\mathbf{x}'$  to be "No".

#### Zero conditional probability

- If no example contains the feature value
- In this circumstance, we face a zero conditional probability problem during test

 $\hat{P}(x_1 | c_i) \cdots \hat{P}(a_{jk} | c_i) \cdots \hat{P}(x_n | c_i) = 0 \quad \text{for } x_j = a_{jk}, \ \hat{P}(a_{jk} | c_i) = 0$ 

For a remedy, class conditional probabilities re-estimated with

$$\hat{P}(a_{jk} | c_i) = \frac{n_c + mp}{n + m}$$
 (m-estimate)

 $n_c$ : number of training examples for which  $x_j = a_{jk}$  and  $c = c_i$  n: number of training examples for which  $c = c_i$  p: prior estimate (usually, p = 1/t for t possible values of  $x_j$ ) m: weight to prior (number of "virtual" examples,  $m \ge 1$ )

#### Zero conditional probability

Example: P(outlook=overcast | no)=0 in the play-tennis dataset

Adding *m* "virtual" examples (*m*: up to 1% of #training example)

- In this dataset, # of training examples for the "no" class is 5.
- We can only add m=1 "virtual" example in our m-esitmate remedy.
- The "outlook" feature can takes only 3 values. So p=1/3.
  - Re-estimate P(outlook | no) with the m-estimate

$$P(\text{overcast}|\text{no}) = \frac{0+1*\left(\frac{1}{3}\right)}{5+1} = \frac{1}{18}$$
$$P(\text{sunny}|\text{no}) = \frac{3+1*\left(\frac{1}{3}\right)}{5+1} = \frac{5}{9} \qquad P(\text{rain}|\text{no}) = \frac{2+1*\left(\frac{1}{3}\right)}{5+1} = \frac{7}{18}$$

# Numerical Stability Recall: NB classifier: $\propto \prod_{i=1}^m P(X_i|Y)P(Y)$

- Multiplying probabilities can get us into problems!
- Imagine computing the probability of 2000 independent coin flips
- Most programming environments: (.5)<sup>2000</sup>=0

 $\bullet$ 

### Numerical Stability

- Our problem: Underflow Prevention
- Recall: log(xy) = log(x) + log(y)
- better to sum logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} \log P(c_j) + \sum_{i \in positions} \log P(x_i \mid c_j)$$

### Naïve Bayes: Dealing with Continuous-valued Features

When facing a continuous-valued feature

Conditional probability often modeled with the normal distribution

$$\hat{P}(x_{j} \mid c_{i}) = \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(x_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$

 $\mu_{ji}$ : mean (avearage) of feature values  $x_j$  of examples for which  $c = c_i$  $\sigma_{ji}$ : standard deviation of feature values  $x_j$  of examples for which  $c = c_i$ 

- Learning Phase: for  $\mathbf{X} = (X_1, \dots, X_n)$ ,  $C = c_1, \dots, c_L$ Output:  $n \times L$  normal distributions and  $P(C = c_i)$   $i = 1, \dots, L$
- Test Phase: Given an unknown instance  $X' = (a'_1, \dots, a'_n)$ 
  - Instead of looking-up tables, calculate conditional probabilities with all the normal distributions achieved in the learning phrase
  - Apply the MAP rule to assign a label (the same as the discrete case)

#### Naïve Bayes

- Example: Continuous-valued Features
  - Temperature is naturally of continuous value.

**Yes**: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8 **No**: 27.3, 30.1, 17.4, 29.5, 15.1

Estimate mean and variance for each class

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2$$

 $\mu_{Yes} = 21.64, \ \sigma_{Yes} = 2.35 \\ \mu_{No} = 23.88, \ \sigma_{No} = 7.09$ 

Learning Phase: output two Gaussian models for P(temp|C)

$$\hat{P}(x \mid Yes) = \frac{1}{2.35\sqrt{2\pi}} \exp\left(-\frac{(x-21.64)^2}{2\times 2.35^2}\right) = \frac{1}{2.35\sqrt{2\pi}} \exp\left(-\frac{(x-21.64)^2}{11.09}\right)$$
$$\hat{P}(x \mid No) = \frac{1}{7.09\sqrt{2\pi}} \exp\left(-\frac{(x-23.88)^2}{2\times 7.09^2}\right) = \frac{1}{7.09\sqrt{2\pi}} \exp\left(-\frac{(x-23.88)^2}{50.25}\right)$$

# Summary

- Naïve Bayes: the conditional independence assumption
  - Training and test are very efficient
  - Two different data types lead to two different learning algorithms
  - Working well sometimes for data violating the assumption!
  - A popular generative model
    - Performance competitive to most of state-of-the-art classifiers even in presence of violating independence assumption
    - Many successful applications, e.g., spam mail filtering
    - A good candidate of a base learner in ensemble learning
    - Apart from classification, naïve Bayes can do more...