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Readings 

• Principle of Data Mining 

– Chapter 10: Predictive Modeling for Classification 

• 10.8 The Naïve Bayes Model 

 

• From Speech and Language Processing. Daniel 
Jurafsky & James H. Martin 

– Chapter 6: Naive Bayes and Sentiment 
Classification  

– https://web.stanford.edu/~jurafsky/slp3/6.pdf 

 



The Classification Problem 

• Given input x, the goal is to predict y, which is 
a categorical variable  
– y is called the class label  

– x is the feature vector  

• Example:  
–   x: monthly income and bank saving amount; 

 y: risky or not risky  

–   x: bag-of-words representation of an email;  
 y: spam or not spam 



Precision and Recall 
• Given a dataset, we train a classifier that gets 99% accuracy 

• Did we do a good job? 

• Build a classifier for brain tumor: 

• 99.9% of brain scans do not show signs of tumor 

• Did we do a good job? 

• By simply saying “NO” to all examples we reduce the error 
by a factor of 10! 

• Clearly Accuracy is not the best way to evaluate the learning 
system when the data is heavily skewed! 

• Intuition:  we need a measure that captures the class we 
care about! (rare) 



Precision and Recall 

• The learner can make two kinds of mistakes: 

• False Positive 

• False Negative  

 

• Precision:  

• “when we predicted the rare class, how often are we right?” 

• Recall 

• “Out of all the instances of the rare class, how many did we catch?” 

 

True Label True Label  

Predicted   True 
Positive 

False 
Positive 

Predicted False 
Negative 

True 
Negative  

0 1 

1 

0 



Precision and Recall 

• Precision and Recall give us two reference points to compare learning 
performance 

 

 

 

 

 

• Which algorithm is better?  

 

• Option 1: Average 

• Option 2: F-Score 

 

  Precision  Recall   Average F Score 

Algorithm 
1 

0.5 0.4 0.45 0.444 

Algorithm 
2 

0.7 0.1 0.4 0.175 

Algorithm 
3 

0.02 1 0.51 0.0392 

Properties of f-score: 
• Ranges between 0-1 

• Prefers precision and recall 
with similar values  

We need a single score 



NAÏVE BAYES CLASSIFIER 
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Example  

 

      

• Example: Play Tennis 
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Probabilistic Classification  

 

      

• Establishing a probabilistic model for classification 

– Discriminative model 

 

),,,( 21 nxxx x

 

Discriminative  

Probabilistic Classifier 
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• To train a discriminative classifier 

regardless its probabilistic or non-

probabilistic nature, all training 

examples of different classes must 

be jointly used to build up a single 

discriminative classifier. 

• Output  L probabilities for L class 

labels in a probabilistic classifier 

while a single label is achieved by a 

non-probabilistic classifier . 

• Example: Logistic Regression, SVM, 

etc. 
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Probabilistic Classification  

 

      

Establishing a probabilistic model for classification (cont.) 

– Generative model (must be probabilistic) 

         ),,)( 1 n1L x(xc,,ccc|P    ,   xx

Generative 

Probabilistic Model 

for Class 1 

)|( 1cP x
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Generative 

Probabilistic Model 

for Class L 
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• L probabilistic models 

have to be trained 

independently  

• Each is trained on only the 

examples of the same 

label 

• Output  L probabilities for 

a given input with L 

models 

• “Generative” means that 

such a model produces 

data subject to the 

distribution via sampling. 
 

 



Bayes rule for probabilistic classifier 

• The learner considers a set of candidate labels, and attempts to 

find the most probable one y∈Y, given the observed data. 

 

 

• Such maximally probable assignment is called maximum a 

posteriori assignment (MAP); Bayes theorem is used to compute 

it: 

yMAP = argmaxy ∈ Y P(y|x)  = argmaxy ∈ Y P(x|y) P(y)/P(x)  
                   

                  = argmaxy ∈ Y P(x|y) P(y) 

Since P(x) is the same for all y∈ Y 
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Bayes Classifier 

 

      

Maximum A Posterior (MAP) classification rule 

For an input x, find the largest one from L probabilities 

output by a discriminative probabilistic classifier 

 

Assign x to label c*  if                 is the largest. 

• Generative classification with the MAP rule 

– Apply Bayesian rule to convert them into posterior probabilities 

 

 

 

 

– Then apply the MAP rule to assign a label 
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Naïve Bayes  

 

      

• Bayes classification 

 

Difficulty: learning the joint probability                     is infeasible!               

• Naïve Bayes classification 

– Assume all input features are class conditionally independent! 

 

 

 

– Apply the MAP classification rule: assign                          to c* 

if 
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Naïve Bayes  
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Example  

 

      

• Example: Play Tennis 
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Example  

 

      

• Learning Phase 

Outlook Play=Yes Play=No 

Sunny 2/9 3/5 

Overcast 4/9 0/5 

Rain 3/9 2/5 

Temperature Play=Yes Play=No 

Hot 2/9 2/5 

Mild 4/9 2/5 

Cool 3/9 1/5 

Humidity Play=Yes Play=No 

High 3/9 4/5 

Normal 6/9 1/5 

Wind Play=Yes Play=No 

Strong 3/9 3/5 

Weak 6/9 2/5 

P(Play=Yes) = 9/14 P(Play=No) = 5/14 
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Example  

 

      

• Test Phase 

– Given a new instance, predict its label 

      x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong) 

– Look up tables achieved in the learning phrase 

 

 

 

 

 

– Decision making with the MAP rule 

P(Outlook=Sunny|Play=No) = 3/5 

P(Temperature=Cool|Play==No) = 1/5 

P(Huminity=High|Play=No) = 4/5 

P(Wind=Strong|Play=No) = 3/5 

P(Play=No) = 5/14 

P(Outlook=Sunny|Play=Yes) = 2/9 

P(Temperature=Cool|Play=Yes) = 3/9 

P(Huminity=High|Play=Yes) = 3/9 

P(Wind=Strong|Play=Yes) = 3/9 

P(Play=Yes) = 9/14 

P(Yes|x’) ≈ [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053 

 P(No|x’) ≈ [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206 
 

         Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.     
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Zero conditional probability 

  
 

      

• If no example contains the feature value 

– In this circumstance, we face a zero conditional probability 

problem during test  

 

– For a remedy, class conditional probabilities re-estimated with 
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Zero conditional probability 

  
 

      

Example: P(outlook=overcast|no)=0 in the play-tennis dataset 

Adding m “virtual” examples (m: up to 1% of #training example) 

• In this dataset, # of training examples for the “no” class is 5. 

• We can only add m=1 “virtual” example in our m-esitmate remedy.  

– The “outlook” feature can takes only 3 values. So p=1/3. 

– Re-estimate P(outlook|no) with the m-estimate 

 

  



Numerical Stability 

• Recall: NB classifier:  

 

– Multiplying probabilities can get us into problems! 

– Imagine computing the probability of 2000 independent 
coin flips 

– Most programming environments:  (.5)2000=0 



Numerical Stability 

• Our problem: Underflow Prevention 

• Recall:  log(xy) = log(x) + log(y) 

• better to sum logs of probabilities rather than multiplying 
probabilities. 

• Class with highest final un-normalized log probability score 
is still the most probable. 
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Naïve Bayes: Dealing with Continuous-valued 

Features  
 

      

When facing a continuous-valued feature 

Conditional probability often modeled with the normal distribution 

 

 

 

 

 

– Learning Phase:  

     Output:         normal distributions and  

– Test Phase: Given an unknown instance  

• Instead of looking-up tables, calculate conditional probabilities with all the 
normal distributions achieved in the learning phrase 

• Apply the MAP rule to assign a label (the same as the discrete case) 
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Naïve Bayes   

 

      

• Example: Continuous-valued Features  

– Temperature is naturally of continuous value. 

     Yes: 25.2, 19.3, 18.5, 21.7, 20.1, 24.3, 22.8, 23.1, 19.8 

      No: 27.3, 30.1, 17.4, 29.5, 15.1 

– Estimate mean and variance for each class 

 

 

– Learning Phase: output two Gaussian models for P(temp|C) 
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Summary  

• Naïve Bayes: the conditional independence assumption 

– Training and test are very efficient  

– Two different data types lead to two different learning 
algorithms 

– Working well sometimes for data violating the assumption! 

• A popular generative model 

– Performance competitive to most of state-of-the-art classifiers 
even in presence of violating independence assumption 

– Many successful applications, e.g., spam mail filtering 

– A good candidate of a base learner in ensemble learning 

– Apart from classification, naïve Bayes can do more…  

      
      


