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Readings 

• Chapter 4 Data Analysis and Uncertainty 

– Sections 4.1 to 4.3 

• Handout: “Background on Probability and 
Statistics” 

• Stefan Axelsson. The Base-Rate Fallacy and 
the Difficulty of Intrusion Detection.  In ACM 
TISSEC 2000. 
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Quiz 
1. A standard normal distribution has: 

(a) mean equal to the variance 
(b) mean equal 1 and variance equal 1 
(c) mean equal 0 and variance equal 1 
(d) mean equal 0 and standard deviation equal 0 
(e) none of these 

2. True or False: P(A and B) = P(A|B)P(B|A). 
3. True or False: If P(A|B) = P(A) then A and B are 

independent. 
4. A card is drawn at random from a deck of playing cards. If it 

is red, the player wins 1 dollar; if it is black, the player loses 
2 dollars. Find the expected value of the game. 

5. An urn contains eight balls, two of which are red and six 
white. Two balls are drawn at random. What is the 
probability that at least one of the balls drawn is red?  



Quiz 

1. A standard normal distribution has: 

(a) mean equal to the variance 

(b) mean equal 1 and variance equal 1 

(c) mean equal 0 and variance equal 1 

(d) mean equal 0 and standard deviation equal 0 

(e) none of these 

2. True or False: P(A and B) = P(A|B)P(B|A). 

3. True or False: If P(A|B) = P(A) then A and B are independent. 

4. A card is drawn at random from a deck of playing cards. If it is red, the player wins 1 
dollar; if it is black, the player loses 2 dollars. Find the expected value of the game. 
E = P(red)*1 + P(black)*(-2) = 1/2 - 1 = -1/2 

5. An urn contains eight balls, two of which are red and six white. Two balls are drawn at 
random. What is the probability that at least one of the balls drawn is red?  
1-P(two white) = 1 - (6/8)^2 = 1 - 9/16 = 7/16 



Probability 

• Probability theory (some disagreement) 

– Concerned with interpretation of probability 

– 17th century: Pascal and Fermat develop 
probability theory to analyze games of chance 

• Probability calculus (universal agreement) 

– Concerned with manipulation of mathematical 
representations  

– 1933: Kolmogorov states axioms of modern 
probability 



Probability basics 

• Basic notion: Random variable (RV) 
– A variable that can take one of a set of possible values 

– X refers to random variable; x refers to a value of that 
random variable 

• Types of random variables 
– Discrete RV has a finite set of possible values;  

Continuous RV can take any value within an interval  

– Boolean: e.g., Warning (is there a storm warning? = 
<yes, no>) 

– Discrete: e.g., Weather is one of 
<sunny,rainy,cloudy,snow> 

– Continuous: e.g., Temperature 



Probability basics 

• Sample space (S) 

– Set of all possible outcomes of an experiment 

• Event 

– Any subset of outcomes contained in the sample 
space S 

– When events A and B have no outcomes in 
common they are said to be mutually exclusive 



Examples 

Random variable(s) 

One coin toss 

Two coin tosses 

Select one card  

Play a chess game 

Inspect a part 

Cavity and toothache 

 Sample space 

 H, T 

 HH, HT, TH, TT 

 2, 2, ..., A (52) 

 Win, Lose, Draw 

 Defective, OK 

 TT, TF, FT, FF 



Axioms of probability 

• For a sample space S with possible events, a 
function that associates real values with each 
event A is called a probability function if the 
following properties are satisfied: 
1.0 ≤ P(A) ≤ 1   for every A 

2.P(S) = 1 

3.P(A1 ∨ A2  ... ∨ An) = P(A1) + P(A2) + ... + P(An)     
 
if A1, A2, ..., An  are pairwise mutually exclusive events 
 



Implications of axioms 

• For any events A, B 

– P(A) = 1 - P(¬A)  

– P(true) = 1   and   P(false) = 0 

– If A and B are mutually exclusive then P(A ∧ B) = 0 

– P(A ∨ B) = P(A) + P(B) - P(A ∧ B) 
 



Permutations and combinations 

• An ordered sequence of k objects taken from a 
set of n distinct objects without replacement, is 
called a permutation of size k  
– The number of permutations of size k that can be 

constructed from the n objects is: 
 

• An unordered sequence of k objects taken from a 
set of n distinct objects without replacement, is 
called a combination of size k  
– The number of combinations of size k that can be 

constructed from the n objects is: 



Example 

• An urn contains ten balls, six of which are red and four of 
which are white.  
Five balls are drawn at random (without replacement).  
What is the probability of drawing three red and two white 
balls? 
 
 
 
 
 

• An urn contains five balls, numbered from 1 to 5. Three 
balls are drawn at random. What is the probability that we 
draw the sequence 3, 4, 1?  



• Probability distribution (i.e., probability mass 
function or probability density function) specifies 
the probability of observing every possible value 
of a random variable 

• Discrete (probability mass function) 
– Denotes probability that X will take on a particular 

value: 
 

• Continuous (probability density function) 
– Probability of any particular point is 0, have to 

consider probability within an interval: 

Probability distribution 



Joint probability 

• Joint probability distribution for a set of random variables 
gives the probability of every atomic event on those 
random variables 
 
E.g., P(Weather, Warning) = a 4 × 2 matrix of values: 
 
 
 
 
 

• Every question about events can be answered by the joint 
distribution 
 



Conditional probability 

• Conditional (or posterior) probability: 
– e.g., P( warning=Y | snow=T ) = 0.4 
– Complete conditional distributions specify 

conditional probability for all possible 
combinations of a set of RVs: 
P( warning | snow ) = 
 {  P( warning = Y | snow = T ),   
  P( warning = N | snow = T ), } 
 { P( warning = Y | snow = F ),   
  P( warning = N | snow = F )  } 

• If we know more, then we can update the 
probability by conditioning on more evidence 
– e.g., if Windy is also given then P( warning | snow, 

windy ) = 0.5 



Conditional probability 

• Definition of conditional probability: 

 

 

• Product rule gives an alternative formulation: 

 

 

• Bayes rule uses the product rule: 



Example 

• Conditional probability: 

 

 

• Example: What is P( sunny | warning = Y )? 



• Chain rule is derived by successive application 
of product rule: 

Conditional probability 



Marginal probability 

• Marginal (or unconditional) probability 
corresponds to belief that event will occur 
regardless of conditioning events 

• Marginalization: 

 

• Example: What is P( cloudy )? 



Independence 

• A and B are independent iff: 
– P(A|B) = P(A)       or       P(B|A) = P(B)       or       P(A, 

B) = P(A) P(B) 

– Knowing B tells you nothing about A 

• Examples 
– Coin flip 1 and coin flip 2?  

– Weather and storm warning? 

– Weather and coin flip=H? 

– Weather and election? 



Conditional independence 

• Two variables A and B are conditionally 
independent given Z 
iff for all values of A, B, Z:  
                         P(A, B | Z) = P( A | Z ) P( B | Z ) 

 

• Note: independence does not imply 
conditional independence or vice versa 



Example 1 

• Conditional independence does not imply 
independence  

• Gender and lung cancer are not independent  
  P(C | G) ≠ P(C) 
 

• Gender and lung cancer are conditionally 
independent given smoking 
  P(C | G, S) = P(C | S) 
 

• Why? Because gender indicates likelihood of 
smoking, and smoking causes cancer 



Example 2 

• Independence does not imply conditional 
independence  

• Sprinkler-on and raining are independent 
  P(S | R) = P(S) 
 

• Sprinkler-on and raining are not conditionally 
independent given  
grass is wet 
  P(S | R, W) ≠ P(S | R) 
 

• Why? Because once we know the grass is wet, if it’s 
not raining, then the explanation for the grass being 
wet has to be the sprinkler 



Example 

•You flip a fair coin twice 

1. The first flip is heads 

2. The second flip is tails 

3. The two flips are not the same 

•Are (1) and (2):  independent? Conditionally 
independent? Neither? 

 



The Base Rate Fallacy 

• Taxi-cab problem (Tversky & Kahneman ‘72) 

– 85% of the cabs are Green 

– 15% of the cabs are Blue 

– An accident eyewitness reports a Blue cab 

– But she is wrong 20% of the time. 

• What is the probability that the cab is Blue? 

– Participants tend to overestimate probability, most 
answer 80% 

– They ignore baseline prior probability of blue cabs. 



More on neglecting base rates 



More on neglecting base rates 



Base Rate Fallacy 

• How to compute probability 

Most people answered 80% 



Medical Test 
• In the 1980’s in the US, a HIV test was used that 

had the following properties: 
There were 4% false positives 
There were 100% true positives 

 

• About 0.4% of the male population was HIV 
positive 

 

• If a man tested HIV positive, what is the 
probability he is actually HIV positive? 



Representation 
• P( positive  | no HIV ) = .04           (4% false positives) 

• P( positive  |      HIV ) = 1              (100% true positives) 

• P( HIV ) = .004       (0.4% HIV positive rate) 

 

•  want:  P( HIV | positive ) = ? 

Positive  
 
 

Negative 

HIV    no HIV 

P( positive | HIV)P( HIV ) P(positive | noHIV )P( noHIV ) 

 

P( negative | HIV)P( HIV ) P(negative | noHIV )P( noHIV) 

 



Representation 
• P( positive  | no HIV ) = .04           (4% false positives) 

• P( positive  |      HIV ) = 1              (100% true positives) 

• P( HIV ) = .004      (0.4% HIV positive rate) 

 

•  want:  P( HIV | positive ) = ? 

Positive  
 
 

Negative 

HIV    no HIV 

P( positive | HIV)P( HIV )= P(positive | noHIV )P( noHIV )= 

   (1)(.004) = .004      (.04)(.996) = .03984 

P( negative | HIV)P( HIV )= P(negative | noHIV )P( noHIV)= 

   (0)(.004) = 0      (.96)(.996) = .95616 



Solution 
 

•  P( HIV | positive ) = .004 / ( .004 + .03984 )  
    = .091 

Positive  
 
 

Negative 

HIV    no HIV 

P( positive | HIV)P( HIV )= P(positive | noHIV )P( noHIV )= 

   (1)(.004) = .004      (.04)(.996) = .03984 

P( negative | HIV)P( HIV )= P(negative | noHIV )P( noHIV)= 

   (0)(.004) = 0      (.96)(.996) = .95616 



Base Rate Fallacy in Intrusion Detection 

• Assumptions in the hypothesized system:  
– Few tens of workstations running UNIX  

– Few servers running UNIX  

– Couple of dozen users 

– Capable of generating 1,000,000 audit records per day 
(with C2 compliant logging)  

– Single site security officer (SSO)  

– 10 audit records affected in the average intrusion  

– 2 intrusions per day => 20 records per 1,000,000 
account to actual intrusions 

Stefan Axelsson. The Base-Rate Fallacy and the Difficulty of 
Intrusion Detection.  ACM TISSEC. 2000. 



Base Rate Fallacy in Intrusion Detection 
(Continued) 

Calculation of Bayesian detection rates  
• I: Intrusive behavior  
• A: Presence of an intrusion alarm  
• With the assumptions, we have:  

– P(I) = 2⋅10-5 ; P( ¬I) = 1 – P(I) = 0.99998  
– Detection rate or True positive rate: P(A|I)  
– False alarm rate: P(A| ¬I)  
– False negative rate: P( ¬A|I) = 1 - P(A|I)  
– True negative rate: P( ¬A| ¬I) = 1 - P(A| ¬I)  

• Maximize  
– P(I|A): Bayesian detection rate  
– P( ¬I| ¬A) 



Base Rate Fallacy in Intrusion Detection 
(Continued) 

• For P(A|I)=1, P(A| ¬I)=1⋅10-5, we get P(I|A) as 0.66  

• For P(A|I)=0.7, P(A| ¬I)=1⋅10-5, we get P(I|A) as 
0.58  

• Even for large detection rate, viz. P(A|I), Bayesian 
detection rate is dominated by the factor of false 
alarm rate, viz. factor of P(A| ¬I)  

• P(I|A) close to 50% will induce SSO to ignore all 
(or most) of the alarms generated 



Base Rate Fallacy in Intrusion Detection 
(Lessons) 

• Intrusion detection is difficult in real world  

• The “effectiveness” of an intrusion detection 
system depends not just on its ability to detect 
intrusive behavior but on its ability to suppress 
false alarms  

• Comparison shows anomaly-based detection 
methods have larger false alarm rates than 
signature-based detection, but signature-based 
detection methods cannot provide protection 
against novel intrusions 



Expectation 

• Denotes the expected value or mean value of a 
random variable X 

• Discrete 

• Continuous 

• Expectation of a function 



Example 

• Let X be a random variable that represents 
the number of heads which appear when a 
fair coin is tossed three times. 

• X = {0, 1, 2, 3} 

• P(X=0) = 1/8; P(X=1) = 3/8; P(X=2) = 3/8; 
P(X=3) = 1/8 

• What is the expected value of X, E[X]? 



Variance 

• Denotes the expectation of the  squared deviation of X from its mean 

• Variance 

• Standard deviation  

• Variance of a function 



Example 

• Let X be a random variable that represents 
the number of heads which appear when a 
fair coin is tossed three times. 

• X = {0, 1, 2, 3} 

• What is the variance of X, Var(X)? 



Common distributions 

• Bernoulli 

• Binomial 

• Multinomial 

• Poisson  

• Normal 



Bernoulli 

• Binary variable (0/1) that takes the value of 1 with 
probability p 

– E.g., Outcome of a fair coin toss is Bernoulli with p=0.5 



Binomial 

• Describes the number of successful 
outcomes in n independent Bernoulli(p) trials  
– E.g., Number of heads in a sequence of 10 tosses 

of a fair coin is Binomial with n=10 and p=0.5 



Multinomial 

• Generalization of binomial to k possible outcomes; 
outcome i has probability pi of occurring  
– E.g., Number of {outs, singles, doubles, triples, homeruns} in 

a sequence of 10 times at bat is Multinomial 

• Let Xi denote the number of times the i-th outcome 
occurs in n trials: 



Poisson 

• Describes the number of successful outcomes occurring in 
a fixed interval of time (or space) if the “successes” occur 
independently with a known average rate  
– E.g., Number of emergency calls to a service center per hour, 

when the average rate per hour is λ=10 



Normal (Gaussian) 

• Important 
distribution gives 
well-known bell 
shape 

• Central limit theorem:  

Distribution of the mean of n samples 

becomes normally distributed as n ↑, 

regardless of the distribution of the 

underlying population 



Multivariate RV 

• A multivariate random variable X is a set X1, X2, ..., 
Xp of random variables 

• Joint density function: P(x)=P(x1, x2, ..., xp) 
• Marginal density function: the density of any 

subset of the complete set of variables, e.g.,: 
 
 
 
Conditional density function: the density of a 
subset conditioned on particular values of the 
others, e.g.,: 



Frequentist view of Probability 

• Dominant perspective for last century 

• Probability is an objective concept 

– Defined as the frequency of an event occurring 
under repeated trials in “same” situation 

– E.g., number of heads in repeated coin tosses 

• Restricts application of probability to 
repeatable events  



Bayesian view 

• Increasing importance over last decade 
– Due to increase in computational power that 

facilitates previously intractable calculations 

• Probability is a subjective concept 
– Defined as individual degree-of-belief that event 

will occur 

– E.g., belief that we will have another snow storm 
tomorrow 

• Begin with prior belief estimates and update 
those by conditioning on observed data  



Calculating probabilities: Bayesian  

• Begin with prior belief estimates: P(A) 

– E.g., After the Seahawks won their conference, Vegas casinos believed 
the Seahawks were likely to win the Superbowl over the Patriots: 
       P(S wins)=0.525, P(P wins)=0.475 

• Observe data 

– But then Vegas observed a heavy majority of the betters (80%) chose 
the Patriots, which is unlikely given their current belief 

• Update belief by conditioning on observed data  
P(A|data) = P(data|A) P(A) / P(data) 

– So they updated their belief to increase the the Patriots’s chance of a 
win: 
       P(S wins | betting) = P(betting | S wins) P(S wins) / P(betting) = 0.50 

• Even when the same data is observed, if people have different 
priors, they can end up with different posterior probability 
estimates P(A|data) 



Bayesian vs. frequentist 

• Bayesian central tenet: 

– Explicitly model all forms of uncertainty 

– E.g., Parameters, model structure, predictions 

• Frequentist often model same uncertainty but in 
less-principled manner, e.g.,: 

– Parameters set by cross-validation 

– Model structure averaged in ensembles 

– Smoothing of predicted probabilities   

• Although interpretation of probability is different, 
underlying calculus is the same 


