
Preliminaries

We establish here a few notational conventions used throughout the text.

Arithmetic with ∞
We shall sometimes use the symbols “∞” and “−∞” in simple arithmetic
expressions involving real numbers. The interpretation given to such ex-
pressions is the usual, natural one; for example, for all real numbers x, we
have −∞ < x < ∞, x + ∞ = ∞, x − ∞ = −∞, ∞ + ∞ = ∞, and
(−∞) + (−∞) = −∞. Some such expressions have no sensible interpreta-
tion (e.g., ∞−∞).

Logarithms and exponentials

We denote by log x the natural logarithm of x. The logarithm of x to the
base b is denoted logb x.

We denote by ex the usual exponential function, where e ≈ 2.71828 is the
base of the natural logarithm. We may also write exp[x] instead of ex.

Sets and relations

We use the symbol ∅ to denote the empty set. For two sets A,B, we use the
notation A ⊆ B to mean that A is a subset of B (with A possibly equal to
B), and the notation A ( B to mean that A is a proper subset of B (i.e.,
A ⊆ B but A 6= B); further, A ∪ B denotes the union of A and B, A ∩ B
the intersection of A and B, and A \B the set of all elements of A that are
not in B.

For sets S1, . . . , Sn, we denote by S1 × · · · × Sn the Cartesian product

xiv



Preliminaries xv

of S1, . . . , Sn, that is, the set of all n-tuples (a1, . . . , an), where ai ∈ Si for
i = 1, . . . , n.

We use the notation S×n to denote the Cartesian product of n copies of
a set S, and for x ∈ S, we denote by x×n the element of S×n consisting of
n copies of x. (We shall reserve the notation Sn to denote the set of all nth
powers of S, assuming a multiplication operation on S is defined.)

Two sets A and B are disjoint if A ∩B = ∅. A collection {Ci} of sets is
called pairwise disjoint if Ci ∩ Cj = ∅ for all i, j with i 6= j.

A partition of a set S is a pairwise disjoint collection of non-empty
subsets of S whose union is S. In other words, each element of S appears
in exactly one subset.

A binary relation on a set S is a subset R of S×S. Usually, one writes
a ∼ b to mean that (a, b) ∈ R, where ∼ is some appropriate symbol, and
rather than refer to the relation as R, one refers to it as ∼.

A binary relation ∼ on a set S is called an equivalence relation if for
all x, y, z ∈ S, we have

• x ∼ x (reflexive property),

• x ∼ y implies y ∼ x (symmetric property), and

• x ∼ y and y ∼ z implies x ∼ z (transitive property).

If ∼ is an equivalence relation on S, then for x ∈ S one defines the set
[x] := {y ∈ S : x ∼ y}. Such a set [x] is an equivalence class. It follows
from the definition of an equivalence relation that for all x, y ∈ S, we have

• x ∈ [x], and

• either [x] ∩ [y] = ∅ or [x] = [y].

In particular, the collection of all distinct equivalence classes partitions the
set S. For any x ∈ S, the set [x] is called the the equivalence class
containing x, and x is called a representative of [x].

Functions

For any function f from a set A into a set B, if A′ ⊆ A, then f(A′) :=
{f(a) ∈ B : a ∈ A′} is the image of A′ under f , and f(A) is simply referred
to as the image of f ; if B′ ⊆ B, then f−1(B′) := {a ∈ A : f(a) ∈ B′} is the
pre-image of B′ under f .

A function f : A → B is called one-to-one or injective if f(a) = f(b)
implies a = b. The function f is called onto or surjective if f(A) = B.
The function f is called bijective if it is both injective and surjective; in
this case, f is called a bijection. If f is bijective, then we may define the
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inverse function f−1 : B → A, where for b ∈ B, f−1(b) is defined to be
the unique a ∈ A such that f(a) = b.

If f : A → B and g : B → C are functions, we denote by g ◦ f their
composition, that is, the function that sends a ∈ A to g(f(a)) ∈ C. Function
composition is associative; that is, for functions f : A → B, g : B → C,
and h : C → D, we have (h ◦ g) ◦ f = h ◦ (g ◦ f). Thus, we can simply
write h ◦ g ◦ f without any ambiguity. More generally, if we have functions
fi : Ai → Ai+1 for i = 1, . . . , n, where n ≥ 2, then we may write their
composition as fn ◦ · · · ◦ f1 without any ambiguity. As a special case of this,
if Ai = A and fi = f for i = 1, . . . , n, then we may write fn ◦ · · · ◦ f1 as
fn. It is understood that f1 = f , and that f0 is the identity function on A.
If f is a bijection, then so is fn for any non-negative integer n, the inverse
function of fn being (f−1)n, which one may simply write as f−n.

Binary operations

A binary operation ? on a set S is a function from S × S to S, where the
value of the function at (a, b) ∈ S × S is denoted a ? b.

A binary operation ? on S is called associative if for all a, b, c ∈ S, we
have (a? b)? c = a? (b ? c). In this case, we can simply write a? b ? c without
any ambiguity. More generally, for a1, . . . , an ∈ S, where n ≥ 2, we can
write a1 ? · · · ? an without any ambiguity.

A binary operation ? on S is called commutative if for all a, b ∈ S,
we have a ? b = b ? a. If the binary operation ? is both associative and
commutative, then not only is the expression a1 ? · · · ? an unambiguous, but
its value remains unchanged even if we re-order the ai.


