CS355: Cryptography

Homework #3

Due date & time: 10:30am on October 7, 2005. Hand in at the beginning of class (preferred), or email to the TA (wangq@purdue.edu) by the due time.

The Late Policy and Additional Instructions for HW1 still apply. Ask for clarifications if you have questions about them.

- **Problem 1 (15 pts)** Suppose that a plaintext message of length 640 bits is encrypted using DES with one of the encryption modes, yielding a ciphertext of length 640 bits. The ciphertext is then sent to the receiver, who will decrypt the ciphertext. Now suppose that during the transmission bit 203 is flipped.
 - (a) How many **bits** MAY be incorrect after the decryption when using ECB?
 - (b) when using CBC?
 - (c) when using CFB with 8-bit blocks (8 bits are encrypted each round)?
 - (d) when using CFB with 16-bit blocks?
 - (e) when using CTR?
- **Problem 2** (12 pts) Recall that in a Feistel-network based block cipher, the round function $F(X, K_i)$ takes an input X and a round key K_i . Suppose that X is 32-bits and the Feistel network has 4 rounds. Furthermore, suppose that all round keys are 32 bits and the round function is defined as $F(X, K_i) = X \oplus K_i$, where \oplus denotes bit XOR. We assume that the key for the entire cipher is a concatenation of the 4 round keys, i.e., the cipher key is 4*32 = 128 bits long.
 - **a** (6 pts) Let the plaintext be $L_0||R_0$, where L_0 and R_0 are 32-bit blocks, and || denotes concatenation. Let the key be $K_1||K_2||K_3||K_4$. Let L_i and R_i be the output of the *i*'th round; then $L_4||R_4$ is the ciphertext. Write L_4 and R_4 in terms of $L_0, R_0, K_1, K_2, K_3, K_4$.
 - b (6 pts) Show that the resulting cipher is insecure again known-plaintext attack by describing an efficient algorithm that can decrypt any encrypted message given one plaintext/ciphertext pair.
 Hint: You do not have to recover the key completely to be able to decrypt encrypted messages.
- **Problem 3 (10 pts)** Exercise 7.(a) in Section 4.9 of the Textbook (On Pages 147–148). Note: You are only asked to do Part (a).
- Problem 4 (13 pts) (This is essentially Exercise 6 in Section 4.9 with hints.)

Triple DES may be defined to use 2 keys, rather than 3 keys. Let E, D be the DES encryption/decryption algorithm. $3DES_{K_1,K_2}(M) = E_{K_1}(D_{K_2}(E_{K_1}(M))).$

We now describe a chosen-plaintext attack against this version of 3DES. In this attack, we are first given two pairs $(M_1, C_1), (M_2, C_2)$, our goal is to recover the key (K_1, K_2) , and we are allowed to issue additional chosen-plaintext queries during the attack.

Let $B_0 = \{0\}^{64}$ be a 64-bit block consisting of all 0's. We first build a table that has 2^{56} entries, one for each key $K \in \{0,1\}^{56}$. Each entry in the table is a pair $(K, D_K(B_0))$. The table is sorted using

the second component of each entry, and we assume that it takes constant time to find an entry that a given value as the second component.

Then for each key $K \in \{0, 1\}^{56}$, we request the ciphertext of $D_K(B_0)$, i.e., $3\text{DES}_{(K_1, K_2)}(D_K(B_0))$, we denote this ciphertext T_K .

- **a.** (3 pts) Use the definition of 3DES in this problem, write out the equation involving T_K and $D_K(B_0)$.
- **b** (5 pts) Finish the description of the attack. Hint: The main idea of the attack is as follows: when we are testing a K that happens to be K_1 , then we need to quickly determine what are possible values of K_2 such that (K_1, K_2) can encrypt $D_K(B_0)$ into T_K .
- f (2 pts) What is the worst-case running time of the attack?
- **g** (**3 pts**) Assuming that we have enough storage, is this attack better than an exhaustive key search attack in practice? Why or why not?