# Introduction to Cryptography CS 355

Lecture 36

#### Secure Multiparty Computation and Commitment Schemes

## Secure Function Evaluation

- Also known as Secure Multiparty Computation
- 2-party SFE: Alice has x, Bob has y, and they want to compute two functions f<sub>A</sub>(x,y), f<sub>B</sub>(x,y). At the end of the protocol
  - Alice learns  $f_A(x,y)$  and nothing else
  - Bob learns  $f_B(x,y)$  and nothing else
  - Scrambled Circuit Protocol due to Andrew Yao
- n-party SFE: n parties each have a private input, and they join compute functions

# **Oblivious** Transfer

- 1 out of 2 OT
  - Alice has two messages  $x_0$  and  $x_1$
  - At the end of the protocol
    - Bob gets exactly one of x<sub>0</sub> and x<sub>1</sub>
    - Alice does not know which one Bob gets

# Bellare-Micali 1-out-2-OT protocol



# Secret Sharing

- t-out-of-n secret sharing
  - divides a secret s into n pieces so that any t pieces together can recover n
- How to do n-out-of-n secret sharing?
- Shamir's secret sharing scheme
  - secret  $s \in Z_p$
  - pick a random degree t-1 polynomial  $f \in F_p[x]$  s.t. f(0)=s
  - user i gets  $s_i = f(i)$
  - t users can interpolate f and find out b
  - t-1 shares reveal no information about s

# **Proactive Secret Sharing**

- Suppose that s is shared in t-out-of-n
- User i has s<sub>i</sub>=f(i)
- Proactive updates:
  - user 1 picks random degree t-1 polynomial s.t. g(t)=0
  - user 1 sends  $y_j=g(j)$  to user j
  - user j does  $s_j^{new} = s_j^{old} + y_j$

# BGW n-party SFE

- Use algorithmic circuits where operations are + and  $\times$
- Each private input is shared among all participants
- Do computation with the shared value
  - e.g., given x and y both are shared by n parties, compute the shares of x+y and x×y
- Secure when the majority of the parties are honest

# Commitment schemes

- An electronic way to temporarily hide a value that cannot be changed
  - Stage 1 (Commit)
    - Sender locks a message in a box and sends the locked box to another party called the Receiver
  - State 2 (Reveal)
    - the Sender proves to the Receiver that the message in the box is a certain message

# Security properties of commitment schemes

- Hiding
  - at the end of Stage 1, no adversarial receiver learns information about the committed value
- Binding
  - at the end of State 1, no adversarial sender can successfully reveal two different values in Stage 2

### Commitment Using One-way Hash Functions

- Insecure version:
  - to commit to x, sender sends H(x) to the receiver
  - to open, sender sends x to the receiver
  - Why is this insecure?
- Improved version:
  - to commit to x, sender chooses a random string r, and send H(r || x) to receiver
  - to open commitment, sender sends r, x to receiver

#### The Pederson Commitment Scheme

- Public parameters: (p,g,h)
  - p: large prime (1024 bit)
  - g: a generator
  - -h: another element such that  $\log_{q}h$  is unknown
- Protocol
  - To commit to x, committer chooses random r and sends (g<sup>x</sup>h<sup>r</sup> mod p) to the receiver.
  - To open, the committer sends x and r to the receiver
- Benefits:
  - one can prove many things about the committed value without opening it

# Coming Attractions ...

• Final Exam!

