
Introduction to Cryptography CS 355

Lecture 34

Key Establishment Protocols

Need for Key Establishment

$M = Decrypt_{K}(C)$

- Alice and Bob share a secret key K
- How to establish the shared key?
- How to refresh it (not a good idea to encrypt a lot of data with the same key)

Key Transport vs. Key Agreement

- Key establishment: process to establish a shared secret key available to two or more parties;
 - key transport: one party creates, and securely transfers it to the other(s).
 - key agreement: key establishment technique in which a shared secret is derived by two (or more) parties

Key Pre-distribution vs. Dynamic Key Establishment

Key establishment

- Key pre-distribution: established keys are completely determined a priori by initial keying material
 - generally in the form of key agreement
- Dynamic shared key establishment: protocols that keys established between a fixed group of users varies in different sessions
 - also known as session key establishment
 - could be key transport or key agreement

Long-Term Key vs. Session Key

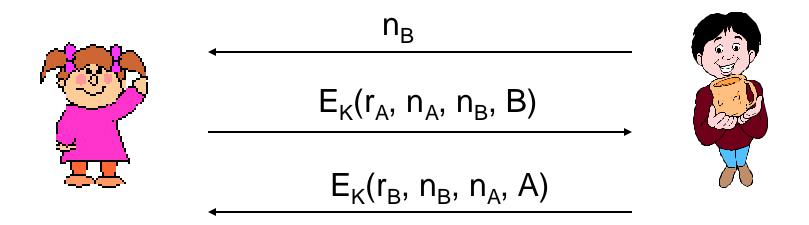
- Session key: temporary key, used for a short time period.
- Long-term key: used for a long term period, sometimes public and secret key pairs used to sign messages.
- Using session keys to:
 - limit available cipher-text encrypted with the same key
 - limit exposure in the event of key compromise
 - avoid long-term storage of a large number of distinct secret keys
 - create independence across communications sessions or applications

Basic Key Transport Protocol

- Assumes a long term symmetric key K shared between A and B
- Basic: new key is r_A

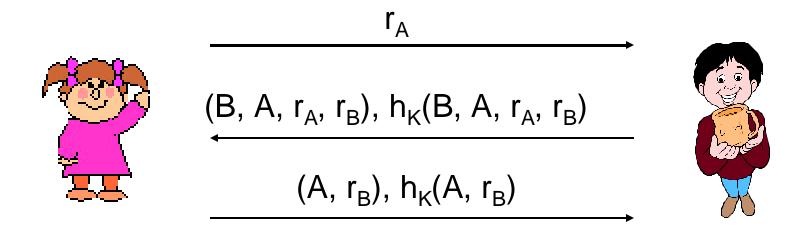
$$A \rightarrow B: E_{K}(r_{A,})$$

Prevents replay: new key is r_A

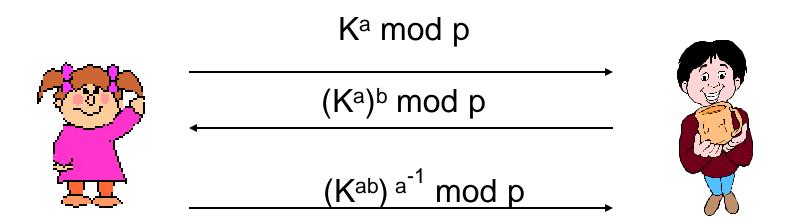

 $A \rightarrow B: E_{K}(r_{A}, t_{A}, B)$

• Key transport with challenge/response:

$$\begin{array}{l} \mathsf{A} \leftarrow \mathsf{B} \text{:} \ \mathsf{n}_{\mathsf{B}} \\ \mathsf{A} \rightarrow \mathsf{B} \text{:} \ \mathsf{E}_{\mathsf{K}}(\mathsf{r}_{\mathsf{A}}, \ \mathsf{n}_{\mathsf{B}}, \ \mathsf{B}) \end{array}$$


Basic Key Transport Protocol (cont.)

- Provides mutual authentication and key authentication
- Jointly control the key
- Does not provide perfect forward secrecy

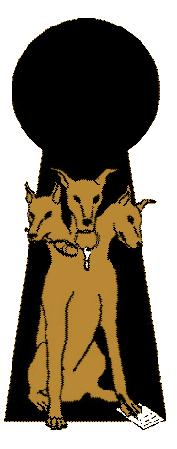


Authenticated Key Exchange Protocol 2 (AKEP2)

- Setup: A and B share long-term keys K and K'
- h_K is a MAC (keyed hash function)
- h'_{K'} is a pseudo-random permutation (a block cipher)
- establish key W = h'_{K'}(r_B)

Shamir's No Key Algorithm

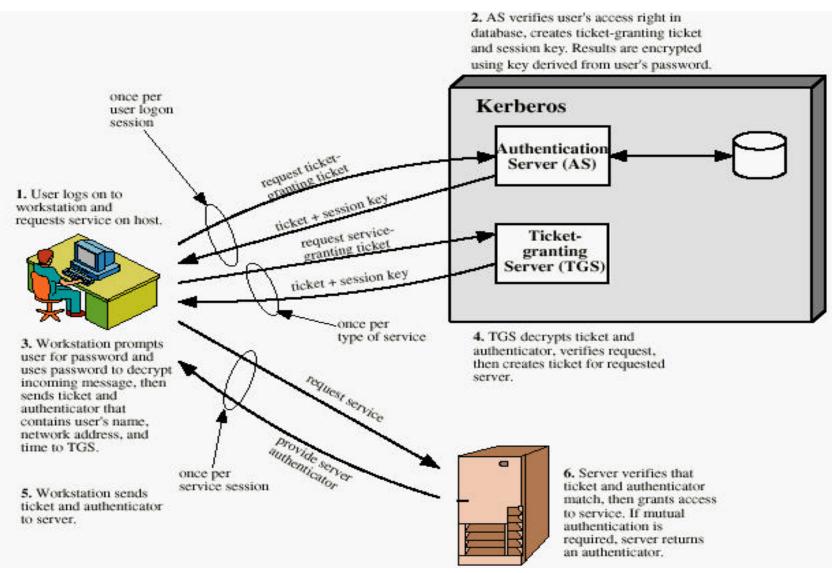
 Setup: p is public, key K is transmitted over a public channel without authentication


Needham-Schroeder Shared-Key Protocol

- Parties: A, B, and trusted server T
- Setup: A and T share K_{AT}, B and T share K_{BT}
- Goal: Mutual entity authentication between A and B; explicit key authentication
- Messages:

$$\begin{array}{ll} \mathsf{A} \rightarrow \mathsf{T}: & \mathsf{A}, \mathsf{B}, \mathsf{N}_{\mathsf{A}} & (1 \\ \mathsf{A} \leftarrow \mathsf{T}: & \mathsf{E}[\mathsf{K}_{\mathsf{A}\mathsf{T}}] \left(\mathsf{N}_{\mathsf{A}}, \mathsf{B}, \mathsf{k}, \mathsf{E}[\mathsf{K}_{\mathsf{B}\mathsf{T}}](\mathsf{k}, \mathsf{A})\right) & (2 \\ \mathsf{A} \rightarrow \mathsf{B}: & \mathsf{E}[\mathsf{K}_{\mathsf{A}\mathsf{T}}] \left(\mathsf{k}, \mathsf{A}\right) & (3 \\ \mathsf{A} \leftarrow \mathsf{B}: & \mathsf{E}[\mathsf{K}_{\mathsf{B}\mathsf{T}}] \left(\mathsf{k}, \mathsf{A}\right) & (3 \\ \mathsf{A} \rightarrow \mathsf{B}: & \mathsf{E}[\mathsf{k}] \left(\mathsf{N}_{\mathsf{B}}\right) & (4 \\ \mathsf{A} \rightarrow \mathsf{B}: & \mathsf{E}[\mathsf{k}] \left(\mathsf{N}_{\mathsf{B}}\text{-1}\right) & (5 \\ \mathsf{A} \rightarrow \mathsf{A}: \mathsf{A} = \mathsf{A}: \mathsf{A}:$$

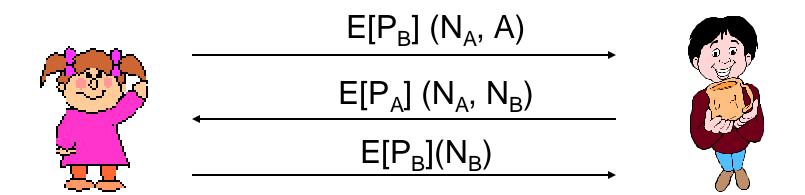
What is Kerberos?


- Kerberos is a network authentication protocol
- Provides authentication for clientserver applications, and data integrity and confidentiality
- Relies entirely on symmetric cryptography
- Developed at MIT: two versios, Version 4 and Version 5 (specified as RFC1510)
- http://web.mit.edu/kerberos/www

Kerberos Overview

- Client wants service from a particular server
- An Authentication Server allows access
- How? Based on tickets
- Ticket: specifies that a particular client (authenticated by the Authentication Server) has the right to obtain service from a specified server S
- Realm: network under the control of an Authentication Server

Overview of Kerberos



Key Establishment by Means of Public Key Encryption

- Often use public-key certificates
- Require off-line Trusted Third Party in the form of CA

Needham-Schroeder Public Key Protocol

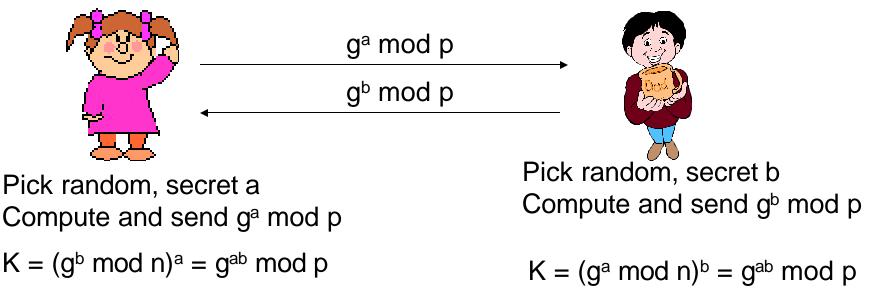
- Setup: A and B both have each other's public key
- Goal: mutual entity authentication and authenticated key establishment
- [NS78]

Lowe's Attack on Needham-Schroeder Public-key Protocol [95]

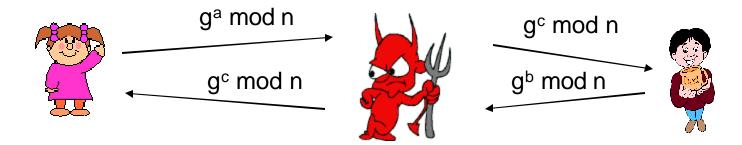
The intruder can convince B that it is A.

 $A \rightarrow I$: $E[P_I] (N_A, A)$

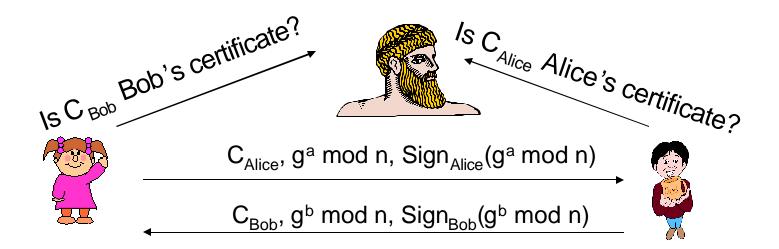
$$I \rightarrow B: E[P_B] (N_A, A)$$
$$I \leftarrow B: E[P_A] (N_A, N_B)$$

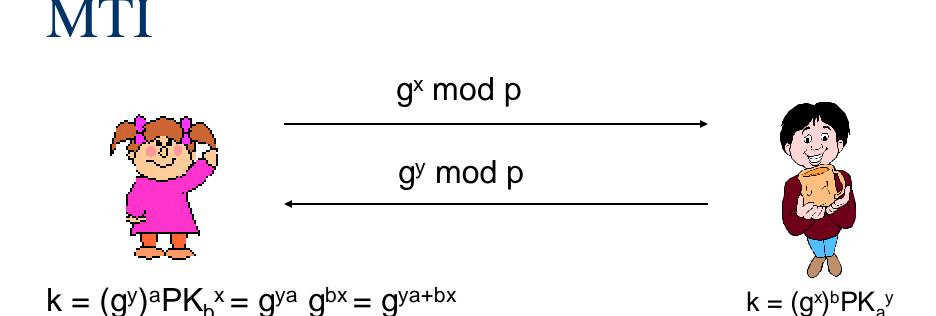

 $\begin{array}{lll} A \leftarrow I \colon & E[P_A] \; (N_A, \; N_B) \\ A \rightarrow I \colon & E[P_I] \; (N_B) \end{array}$

 $I \rightarrow B: E[P_B] (N_B)$

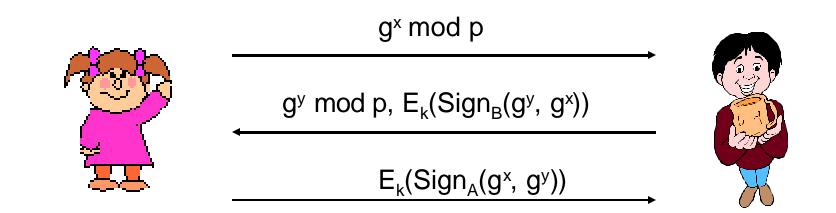

Fix: add B's name the second message

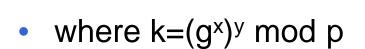
Key Agreement: Diffie-Hellman Protocol


- Key agreement protocol, both A and B contribute to the key
- Setup: p prime and g generator of Z_p*, p and g public.



Authenticated Diffie-Hellman


Alice computes g^{ac} mod n and Bob computes g^{bc} mod n !!!



- a and b are the private keys of A and B
- g^a and g^b are public keys of A and B
- Secure against passive attacks only
- Provides mutual (implicit) key authentication but neither key confirmation nor entity authentication

Station-to-Station (STS)

Provides mutual entity authentication

Coming Attractions ...

Information Theory

