Introduction to Cryptography CS 355

Lecture 30

Digital Signatures

Announcements

- Wednesday's lecture cancelled
- Friday will be guest lecture by Prof. Cristina Nita-Rotaru on Identification Schemes
 - This topic will be covered in the final exam

Lecture Outline

- Digital signatures
- Security requirements
- The RSA signatures
- The EI Gamal signatures
- The DSA signatures

Where Does This Fit?

	Secret Key Setting	Public Key Setting
Secrecy / Confidentiality	Stream cipher Block cipher + encryption modes	Public key encryption: RSA, El Gamal, etc.
Authenticity / Integrity	MAC	Digital Signatures

Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
- Contracts, they are valid if they are signed.
- Can we have a similar service in the electronic world?

Digital Signatures

- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) key verification key, a message, and a signature
- Provides:
 - Authentication
 - Data integrity
 - Non-Repudiation (MAC does not provide this.)

Adversarial Goals

- **Total break**: adversary is able to find the secret for signing, so he can forge then any signature on any message.
- Selective forgery: adversary is able to create valid signatures on a message chosen by someone else, with a significant probability.
- Existential forgery: adversary can create a pair (message, signature), s.t. the signature of the message is valid.
- A signature scheme can not be perfectly secure; it can only be computationally secure.
- Given enough time and adversary can always forge Alice's signature on any message.

Attack Models for Digital Signatures

- **Key-only attack**: Adversary knows only the verification function (which is supposed to be public).
- Known message attack: Adversary knows a list of messages previously signed by Alice.
- Chosen message attack: Adversary can choose what messages wants Alice to sign, and he knows both the messages and the corresponding signatures.

Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
 - Pre-image resistant
 - Weak collision resistant
 - Strong collision resistant

RSA Signatures

Key generation (as in RSA encryption):

- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and $\Phi = (q 1)(p 1)$
- Select a random integer e, 1 < e < Φ, s.t. gcd(e, Φ) = 1
- Compute d, 1 < d < Φ s.t. ed = 1 mod Φ

Public key: (e, n) Secret key: d,

RSA Signatures (cont.)

Signing message M

- Verify 0 < M < n
- Compute S = M^d mod n

Verifying signature S

- Use public key (e, n)
- Compute S^e mod n = (M^d mod n)^e mod n = M

Note: in practice, a hash of the message is signed and not the message itself.

RSA Signatures (cont.)

Example of forging

 Attack based on the multiplicative property of property of RSA.

> $y_1 = sig_K(x_1)$ $y_2 = sig_K(x_2), \text{ then}$ $ver_K(x_1x_2 \mod n, y_1y_2 \mod n) = true$

- So adversary can create the valid signature y₁y₂ mod n on the message x₁x₂ mod n
- This is an existential forgery using a known message attack.

El Gamal Signature

Key Generation (as in ElGamal encryption)

- Generate a large random prime p such that DLP is infeasible in Z_p and a generator g of the multiplicative group Z_p of the integers modulo p
- Select a random integer *a*, 1 ≤ *a* ≤ *p*-2, and compute

 $y = g^a \mod p$

- Public key is (p; g; $\beta = g^a$)
- Private key is a.
- Recommended sizes: 1024 bits for p and 160 bits for a.

ElGamal Signature (cont.)

Signing message M

- Select random k, $1 \le k \le p-1$, $k \in Z_{p-1}^*$
- Compute
 - $r = g^k \mod p$
 - s = k⁻¹(h(M) ar) mod (p-1)
- Signature is: (r,s)
- Size of signature is double size of p

NOTE: h is a hash function

ElGamal Signature (cont.)

Signature is: (r, s)

$$r = g^k \mod p$$

 $s = k^{-1}(h(M) - ar) \mod (p-1)$

e[™] and a TIFF (Uncompressed) decompressor are needed to see this pic

Verification

- Verify that r is in Z_{p-1}^* : $1 \le r \le p-1$
- Compute

$$v_1 = \beta^r r^s \mod p$$

$$v_2 = g^{h(M)} \mod p$$

• Accept iff $v_1 = v_2$

ElGamal Signature (cont.)

Security of ElGamal signature

- Weaker than DLP
- k must be unique for each message signed
- Hash function h must be used, otherwise easy for an existential forgery attack
 - without h, a signature on $M \in Z_p$, is (r,s) s.t. $\beta^r r^s = g^M \mod p$
 - choose u,v s.t. gcd(v,p-1)=1, then let $r=g^{u}\beta^{v} \mod p=g^{u+av} \mod p$, and let $s=-rv^{-1} \mod (p-1)$
 - then $\beta^r r^s = g^{ar} (g^{u+av})^s = g^{ar} g^{avs} g^{us} = g^{ar} g^{av(-rv^{-1})} g^{us} = g^{ar} g^{-ar} g^{us} = g^{us}$
 - i.e., (r,s) is a signature of the message us

ElGamal Signature (Continued)

- 0 < r < p must be checked, otherwise easy to forge a signature on any message if an valid signature is available.
 - given M, and $r=g^k$, $s=k^{-1}(h(M) ar) \mod (p-1)$
 - for any message M', let $u=h(M') / h(M) \mod (p-1)$
 - computes s'=su mod (p-1) and r' s.t. r'=ru (mod (p-1)) AND r'=r (mod p), then $\beta^{r'} r^{s'} = \beta^{ru} r^{su} = (\beta^r r^s)^u = (g^{h(M)})^u = g^{h(M')}$

Digital Signature Algorithm (DSA)

Specified as FIPS 186

Key generation

- Select a prime q of 160-bits
- Choose $0 \le t \le 8$
- Select $2^{511+64t} with <math>q | p-1$
- Let α be a generator of Z_p^* , and set $g = \alpha^{(p-1)/q} \mod p$
- Select $1 \le a \le q-1$
- Compute $\beta = g^a \mod p$

```
Public key: (p, q, g, \beta)
Private key: a
```

DSA

Signing message M:

- Select a random integer k, 0 < k < q
- Compute
 - k⁻¹ mod q
 - $\mathbf{r} = (\mathbf{g}^k \mod \mathbf{p}) \mod \mathbf{q}$
 - $s = k^{-1} (h(M) + ar) \mod q$
- Signature: (r, s)

Note: FIPS recommends

the use of SHA-1 as hash function.

DSA

Signature: (r, s) r = (g^k mod p) mod q s = k⁻¹ (h(M) + ar) mod q

Verification

- Verify 0 < r < q and 0 < s < q, if not, invalid
- Compute

$$u_1 = h(M)s^{-1} \mod q$$
,

 $u_2 = rs^{-1} \mod q$

• Valid iff $r = (g^{u_1} \beta^{u_2} \mod p) \mod q$ $g^{u_1} \beta^{u_2} = g^{h(M)s^{-1}} g^{ars^{-1}} = g^{(h(M)+ar)s^{-1}} = g^k \pmod{p}$

Coming Attractions ...

Security protocols

