Introduction to Cryptography
CS 355
Lecture 26

El Gamal
Lecture Outline

- ElGamal Encryption
ElGamal

- Published in 1985 by ElGamal
- Its security based on the intractability of the discrete logarithm problem and the CDH and DDH problems
- Message expansion: the ciphertext is twice as big as the original message
- Uses randomization, each message has many different possible ciphertexts
El Gamal

- Public key is \((p; g; \beta = g^a \mod p)\)
 - \(p\) is a large random prime number such that DLP is infeasible in \(\mathbb{Z}_p\)
 - \(g\) is a generator \(g\) of the multiplicative group \(\mathbb{Z}_p^*\)
 - \(a\) is a random integer in \([1..p-2]\)
- Private key is \(a\).
- The ciphertext of \(M\) is \((g^k \mod p, M\beta^k \mod p)\)
 - \(k\) is randomly chosen such that \(0 \leq k \leq p-2\)
- How to decrypt?
Parameters Size

- All parties could use the same modulus p and generator g
 - they choose different private key a, and will have different β’s
- Different encryptions should use different k
- Prime p should be chosen as 1024 bits to ensure that DLP is infeasible, while k should be 160 bits
- ElGamal encryption can also be defined in cyclic groups other than \mathbb{Z}_p^*
 - e.g., in elliptic curves
Security of ElGamal

- ElGamal is not semantically secure.

- WHY? An attacker can learn information about the plaintext without decrypting: given two encryptions, can say which plaintext was a quadratic residue and which one was not.
Making ElGamal Semantically Secure

• Main idea: Use only quadratic residues in the operation
 – Choose p such that $p = 2q + 1$, where q is also prime
 – Then define ElGamal in Q_q, the subgroup of quadratic residues modulo p, this subgroup is a cyclic subgroup of \mathbb{Z}_p having order q
ElGamal and DH Problems

- **Semantic security of the ElGamal algorithm** (where we use only QRs) is equivalent to the infeasibility of **Decision Diffie-Hellman**
- **ElGamal decryption** (without knowing the private key) is equivalent to solving **Computational Diffie-Hellman**
Coming Attractions …

• Integrity/Authenticity
• Hash functions