Introduction to Cryptography CS 355

Lecture 26

El Gamal

Lecture Outline

ElGamal Encryption

ElGamal

- Published in 1985 by ElGamal
- Its security based on the intractability of the discrete logarithm problem and the CDH and **DDH** problems
- Message expansion: the ciphertext is twice as big as the original message
- Uses randomization, each message has many different possible ciphertexts

El Gamal

- Public key is (p; g; β=g^a mod p)
 - p is a large random prime number such that DLP is infeasible in $Z_{\rm p}$
 - g is a generator g of the multiplicative group Z_p*
 - a is a random integer in [1..p-2]
- Private key is a.
- The ciphertext of M is (g^k mod p, Mβ^k mod p)
 - k is randomly chosen such that $0 \le k \le p-2$
- How to decrypt?

Parameters Size

- All parties could use the same modulus *p* and generator g
 - they choose different private key a, and will have different β 's
- Different encryptions should use different *k*
- Prime p should be chosen as 1024 bits to ensure that DLP is infeasible, while k should be 160 bits
- ElGamal encryption can also be defined in cyclic groups other than Z_{D}^{*}
 - e.g., in elliptic curves

Security of ElGamal

- ElGamal is not semantically secure.
- WHY? An attacker can learn information about the plaintext without decrypting: given two encryptions, can say which plaintext was a quadratic residue and which one was not.

6

Making ElGamal Semantically Secure

- Main idea: Use only quadratic residues in the operation
 - Choose p such that p = 2q + 1, where q is also prime
 - Then define ElGamal in Q_q, the subgroup of quadratic residues modulo p, this subgroup is a cyclic subgroup of Z_p having order q

ElGamal and DH Problems

- Semantic security of the ElGamal algorithm
 (where we use only QRs) is equivalent to the infeasibility of Decision Diffie-Hellman
- ElGamal decryption (without knowing the private key) is equivalent to solving Computational Diffie-Hellman

Coming Attractions ...

- Integrity/Authenticity
- Hash functions

