Introduction to Cryptography CS 355

Lecture 24

Diffie-Hellman and Discrete Log

Lecture Outline

- The Discrete Log
 problem
- The Diffie-Hellman protocol

Discrete Logarithm Problem (DLP)

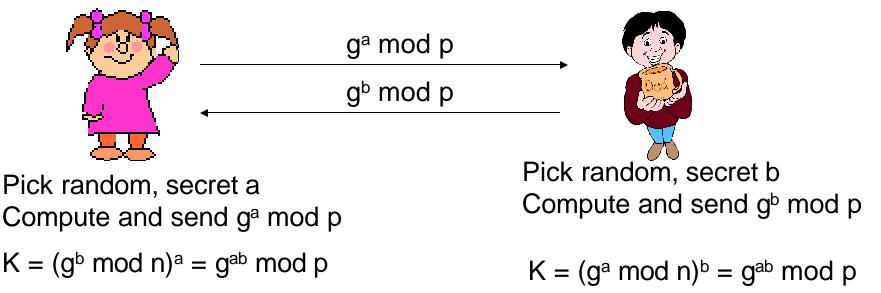
- Given a multiplicative group (G, *), an element g in G having order n and an element y in the subgroup generated by g, denoted <g>
- Find the unique integer x such that

 $g^x \mod n = y$

- i.e., x is the discrete logarithm log_gy
- For example, given the group Z_p*, where p is a 1024bit prime, let g be an element having order q, where q is a 160-bit prime
 - q | (p-1)
 - e.g., $Z_7^* = \{3, 2, 6, 4, 5, 1\}$, we choose the subgroup $\{2, 4, 1\}$

The Diffie-Hellman Protocol

- Key agreement protocol, both A and B contribute to the key
- Setup: p prime and g generator of Z_p*, p and g public.



Diffie-Hellman Key Establishment

- A and B wishes to establish a shared secret key so that no eavesdropper can compute the key:
- A and B shares public parameters a group Z_p and a generator g
 - A randomly chooses x and send g^x mod p to B
 - B randomly chooses y and send g^y mod p to A
 - Both A and B can compute g^{xy} mod p
 - It is (believed to be) infeasible for an eavesdropper to compute g^{xy} mod p
 - A and B can establish a shared secret without sharing any secret to start with

CDH and DDH

- Security of the Diffie-Hellman key establishment protocol based on the CDH problem
- Computational Diffie-Hellman (CDH)
 - Given a multiplicative group (G, *), an element g ∈ G having order q, given g^x and g^y, find g^{xy}
- Decision Diffie-Hellman (DDH)
 - Given a multiplicative group (G, *), an element $g \in G$ having order q, given g^x , g^y , and g^z , determine if $g^{xy} \equiv g^z \mod n$
- Discrete Log is at least as hard as CDH, which is at least as hard as DDH.

Choices of Parameters

- Why use an element of order q, instead of just using a generator for Z_p*?
- Answer:
 - it is often beneficial to have order being a prime
 - e.g., given e, one can find d s.t. g^{ed}=g
 - Balance security and size
 - p needs to be large enough for discrete log to be hard, thus 1024 bits
 - we want the group to be relative small, so that an index to an element in the group is short (e.g., 160 bits)
 - it needs to be large enough to prevent exhaustive search

Algorithms for The Discrete Log Problem

- There are generic algorithms that work for every cyclic group
 - Pollard Rho
 - Pohlig-Hellman
- There are algorithms that work just for some groups such as Z_p*
 - e.g., the index calculus algorithms
 - these algorithms are much more efficient
 - therefore, 1024 bits are needed for adequate level of security

Bit Security in Discrete Log

- Even though it is difficult to find log_gx, it is possible to determine some bits in log_gx
 - e.g., let g be the generator of Z_p^* , consider the least significant bit (LSB) of $\log_g x$
 - recall that $\log_{g} x$ is even iff. x is quadratic residue in Z_{p}^{*}
- However, finding some bits (aka. hard-core bits) is as hard as computing discrete log
 - in Z_p^* , when p-1=2^st, where t is odd, computing the s least significant bits are easy, computing the s+1 LSB is difficult

One Way Functions

- A function f(x) is a one-way function if
 - given a, it is easy to compute f(a).
 - yet given b, it is difficult to find a such that f(a)=b.
- Examples of one-way functions
 - Modular exponentiation $f(x) = g^x \mod p$

- Multiplication $f(x,y) = x \cdot y$

- One way functions are the foundations for modern cryptography, yet we do not know whether they exist or not.
 - existence of one-way functions imply $P \neq NP$

Coming Attractions ...

ElGamal Encryption

