Introduction to Cryptography CS 355

Lecture 23

Attacks on RSA

Lecture Outline

- Quadratic Residues Modulo a composite number
- Attacks on RSA

Notation clarification

- Z_n* = { 0<a<n | gcd(a,n)=1 }
- (Z_n*, *) is a group
- $|Z_n^*| = \phi(n)$
- Z_n* is called the standard reduced set of residues modulo n

Quadratic Residues Modulo a Composite n

Definition: a is a quadratic residue modulo n ($a \in Q_n$) if $\exists b \in Z_n^*$ such that $b^2 \equiv a \mod n$, otherwise when $a \neq 0$, a is a quadratic nonresidue

Fact: $a \in Q_n^*$, where n=pq, iff. $a \in Q_p$ and $a \in Q_q$

- The "only if" direction: $b^2 \equiv a \mod n$, then $b^2 \equiv a \mod p$ and $b^2 \equiv a \mod q$
- The "if" direction: If $b^2 \equiv a \mod p$ and $c^2 \equiv a \mod q$, then the four solutions to the four equation sets

1.
$$x \equiv b \mod p$$
 and $x \equiv c \mod q$

2.
$$x \equiv b \mod p$$
 and $x \equiv -c \mod q$

3.
$$x \equiv -b \mod p$$
 and $x \equiv c \mod q$

4.
$$x \equiv -b \mod p$$
 and $x \equiv -c \mod q$

satisfies $x^2 \equiv a \mod n$

For example

- Fact: if n=pq, then x²≡1 (mod n) has four solutions that are <n.
 - $x^2 \equiv 1 \pmod{n}$ if and only if both $x^2 \equiv 1 \pmod{p}$ and $x^2 \equiv 1 \pmod{q}$
 - Two trivial solutions: 1 and n-1
 - 1 is solution to $x \equiv 1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
 - n-1 is solution to $x \equiv -1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 - Two other solutions
 - solution to $x \equiv 1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 - solution to $x \equiv -1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
 - E.g., n=3×5=15, then x²≡1 (mod 15) has the following solutions:
 1, 4, 11, 14

Quadratic Residues Modulo a Composite

•
$$|Q_n| = |Q_p| \cdot |Q_q| = (p-1)(q-1)/4$$

- $\overline{Q}_n = 3(p-1)(q-1)/4$
- Jacobi symbol does not tell whether a number a is a QR

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{q}\right)$$

- when it is -1, then either á∈ Q_p ∧ a∉ Q_q or a∉ Q_p ∧ a∈ Q_q, then a is not QR
- when it is 1, then either $a \in Q_p \land a \in Q_q$ or $a \notin Q_p \land a \notin Q_q$
- it is widely believed that determining QR modulo n is equivalent to factoring n, no proof is known
 - without factoring, one can guess correctly with prob. $\frac{1}{2}$

Attacks on RSA

- Goals:
 - recover secret key d
 - Brute force key search
 - infeasible
 - Timing attacks
 - Mathematical attacks
 - decrypt one message
 - learn information from the cipher texts

Math-Based Key Recovery Attacks

- Three possible approaches:
 - 1. Factor n = pq
 - 2. Determine $\Phi(n)$
 - 3. Find the private key d directly
- All the above are equivalent to factoring n
 - 1 implies 2
 - 2 implies 3
 - we show 2 implies 1 and 3 implies 1

Factoring Large Numbers

- Three most effective algorithms are
 - quadratic sieve
 - elliptic curve factoring algorithm
 - number field sieve
- One idea many factoring algorithms use:
 - Suppose one find x²≡y² (mod n) such that x≠y (mod n) and x≠-y (mod n). Then n | (x-y)(x+y). Neither (x-y) or (x+y) is divisible by n; thus, gcd(x-y,n) has a nontrivial factor of n

Time complexity of factoring

quadratic sieve:

- $O(e^{(1+o(1))sqrt(\ln n \ln \ln n)})$ for n around 2^{1024} , O(e⁶⁸)
- elliptic curve factoring algorithm
 - $O(e^{(1+o(1))sqrt(2 \ln p \ln \ln p)})$, where p is the smallest prime factor
 - for n=pq and p,q around 2^{512} , for n around 2^{1024} O (e⁶⁵)
- number field sieve
 - $O(e^{(1.92+o(1)) (\ln n)^{1/3} (\ln \ln n)^{2/3}}),$ for n around $2^{1024} O(e^{60})$

- Multiple 512-bit moduli have been factored
- Extrapolating trends of factoring suggests that
 - 768-bit moduli will be factored by 2010
 - 1024-bit moduli will be factored by 2018

$\Phi(n)$ implies factorization

• Knowing both n and $\Phi(n)$, one knows

$$n = pq$$

$$\Phi(n) = (p-1)(q-1) = pq - p - q + 1$$

$$= n - p - n/p + 1$$

$$p\Phi(n) = np - p^{2} - n + p$$

$$p^{2} - np + \Phi(n)p - p + n = 0$$

$$p^{2} + (\Phi(n) - n - 1)p + n = 0$$

- There are two solutions of p in the above equation, which is in standard (rather than modular) arithmetic
- Both p and q are solutions.

Factoring when knowing e and d

• Knowing ed such that $ed \equiv 1 \pmod{\Phi(n)}$ write $ed - 1 = 2^{s} r (r odd)$ choose w at random such that 1<w<n-1 if w not relative prime to n then return gcd(w,n) (if gcd(w,n)=1, what value is $(w^{2^{n} r} \mod n)$?) compute w^r, w^{2r}, w^{4r}, ..., by successive squaring until find $w^{2^{t}} \equiv 1 \pmod{n}$ Fails when $w^r \equiv 1 \pmod{n}$ or $w^{2^{t}} \equiv -1 \pmod{n}$ Failure probability is less than $\frac{1}{2}$ (Proof is complicated)

Summary of Key Recovery Mathbased Attacks on RSA

- Three possible approaches:
 - 1. Factor n = pq
 - 2. Determine $\Phi(n)$
 - 3. Find the private key d directly
- All are equivalent
 - finding out d implies factoring n
 - if factoring is hard, so is finding out d
- Should never have different users share one common modulus
 - (why?)

Decryption attacks on RSA

- The RSA Problem: Given a positive integer n that is a product of two distinct large primes p and q, a positive integer e such that gcd(e, (p-1)(q-1))=1, and an integer c, find an integer m such that m^e=c (mod n)
 - widely believed that the RSA problem is computationally equivalent to integer factorization; however, no proof is known
- The security of RSA encryption's scheme depends on the hardness of the RSA problem.

Other Decryption Attacks on RSA

Small encryption exponent e

- When e=3, Alice sends the encryption of message m to three people (public keys (e, n₁), (e, n₂), (e, n₃))
 C₁ = M³ mod n₁, C₂ = M³ mod n₂, C₃ = M³ mod n₃,
- An attacker can compute a solution to the following system

 $x \equiv c_1 \mod n_1$ $x \equiv c_2 \mod n_2$ $x \equiv c_3 \mod n_3$

- The solution x modulo n₁n₂n₃ must be M³
 - (No modulus!), one can compute integer cubit root
- Countermeasure: padding required

Other Attacks on RSA

Forward Search Attack

- If the message space is small, the attacker can create a dictionary of encrypted messages (public key known, encrypt all possible messages and store them)
- When the attacker 'sees' a message on the network, compares the encrypted messages, so he finds out what particular message was encrypted

Coming Attractions ...

- Discrete Log
- Diffie-Hellman
- ElGamal Encryption

