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Introduction to Cryptography 
CS 355

Lecture 23 

Attacks on RSA
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Lecture Outline

• Quadratic Residues 
Modulo a composite 
number

• Attacks on RSA
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Notation clarification

• Zn* = { 0<a<n | gcd(a,n)=1 }
• (Zn*, *) is a group
• | Zn* | = φ(n)
• Zn* is called the standard reduced set of residues 

modulo n
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Quadratic Residues Modulo a 
Composite n
Definition: a is a quadratic residue modulo n 

(a∈Qn) if  ∃ b ∈Zn
* such that  b2 ≡ a mod n, 

otherwise when a≠0, a is a quadratic nonresidue
Fact: a∈Qn*, where n=pq, iff. a∈Qp and a∈Qq
• The “only if” direction: b2 ≡ a mod n  , then b2 ≡ a mod p 

and b2 ≡ a mod q
• The “if” direction: If b2 ≡ a mod p and c2 ≡ a mod q, then 

the four solutions to the four equation sets
1. x ≡ b mod p and x ≡ c mod q
2. x ≡ b mod p and x ≡ -c mod q
3. x ≡ -b mod p and x ≡ c mod q
4. x ≡ -b mod p and x ≡ -c mod q

satisfies x2 ≡ a mod n
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For example

• Fact: if n=pq, then x2≡1 (mod n) has four solutions that 
are <n.   
– x2≡1 (mod n) if and only if 

both x2≡1 (mod p) and x2≡1 (mod q)
– Two trivial solutions: 1 and n-1

• 1 is solution to x ≡ 1 (mod p) and x ≡ 1 (mod q)
• n-1 is solution to x ≡ -1 (mod p) and x ≡ -1 (mod q)

– Two other solutions
• solution to x ≡ 1 (mod p) and x ≡ -1 (mod q)
• solution to x ≡ -1 (mod p) and x ≡ 1 (mod q)

– E.g., n=3×5=15, then x2≡1 (mod 15) has the following solutions: 
1, 4, 11, 14
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Quadratic Residues Modulo a 
Composite

• |Qn| = |Qp| • |Qq| = (p-1)(q-1)/4
• = 3(p-1)(q-1)/4
• Jacobi symbol does not tell whether a number a is a QR

• when it is -1, then either a∈Qp ∧ a∉Qq or  a∉Qp ∧ a∈Qq, 
then a is not QR

• when it is 1, then either a∈Qp ∧ a∈Qq or  a∉Qp ∧ a∉Qq

• it is widely believed that determining QR modulo n is 
equivalent to factoring n, no proof is known
– without factoring, one can guess correctly with prob. ½
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Integers in Zn*

x ∈Qp
x ∈Qq

QR modulo n

x ∉ Qp
x ∈Qq

x ∈Qp
x ∉Qq

x ∉ Qp
x ∉Qq

Jacobi symbol is -1Jacobi symbol is 1
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Attacks on RSA 

• Goals:
– recover secret key d

• Brute force key search 
– infeasible

• Timing attacks
• Mathematical attacks 

– decrypt one message
– learn information from the cipher texts
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Math-Based Key Recovery Attacks

• Three possible approaches: 
1. Factor n = pq
2. Determine Φ(n)
3. Find the private key d 

directly

• All the above are equivalent 
to factoring n

– 1 implies 2
– 2 implies 3
– we show 2 implies 1 and 3 

implies 1
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Factoring Large Numbers

• Three most effective algorithms are
– quadratic sieve
– elliptic curve factoring algorithm
– number field sieve

• One idea many factoring algorithms use:
– Suppose one find x2≡y2 (mod n) such that x≠y (mod n) 

and x≠-y (mod n).  Then  n | (x-y)(x+y).  Neither (x-y) 
or (x+y) is divisible by n; thus, gcd(x-y,n) has a non-
trivial factor of n
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Time complexity of factoring

• quadratic sieve:
– O(e(1+o(1))sqrt(ln n ln ln n)) for n around 21024, O(e68)

• elliptic curve factoring algorithm
– O(e(1+o(1))sqrt(2 ln p ln ln p)), where p is the smallest prime factor
– for n=pq and p,q around 2512, for n around 21024 O (e65)

• number field sieve
– O(e(1.92+o(1)) (ln n)^1/3 (ln ln n)^2/3), for n around 21024 O (e60)

• Multiple 512-bit moduli have been factored
• Extrapolating trends of factoring suggests that

– 768-bit moduli will be factored by 2010
– 1024-bit moduli will be factored by 2018
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Φ(n) implies factorization

• Knowing both n and Φ(n), one knows 
n = pq
Φ(n) = (p-1)(q-1) = pq – p – q + 1

= n – p – n/p + 1
pΦ(n) = np – p2 – n + p
p2 – np + Φ(n)p – p + n = 0
p2 + (Φ(n) – n – 1) p + n = 0

• There are two solutions of p in the above 
equation, which is in standard (rather than 
modular) arithmetic

• Both p and q are solutions. 
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Factoring when knowing e and d

• Knowing ed such that ed ≡ 1 (mod Φ(n))
write ed – 1 = 2s r (r odd)
choose w at random such that 1<w<n-1
if w not relative prime to n then return gcd(w,n)

(if gcd(w,n)=1, what value is (w2^s r mod n)?)
compute wr, w2r, w4r, …, by successive 
squaring until find w2^t r ≡ 1 (mod n)

Fails when wr≡ 1 (mod n)  or w2^t r≡ -1 (mod n)
Failure probability is less than ½ (Proof is complicated)
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Summary of Key Recovery Math-
based Attacks on RSA

• Three possible approaches: 
1.Factor n = pq
2.Determine Φ(n)
3.Find the private key d directly

• All are equivalent
– finding out d implies factoring n
– if factoring is hard, so is finding out d

• Should never have different users share one common 
modulus 
– (why?)
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Decryption attacks on RSA 

• The RSA Problem: Given a positive integer n that 
is a product of two distinct large primes p and q, 
a positive integer e such that gcd(e, (p-1)(q-
1))=1, and an integer c, find an integer m such 
that me≡c (mod n)
– widely believed that the RSA problem is 

computationally equivalent to integer factorization; 
however, no proof is known

• The security of RSA encryption’s scheme 
depends on the hardness of the RSA problem.
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Other Decryption Attacks on RSA
Small encryption exponent e
• When e=3, Alice sends the encryption of message m to 

three people (public keys (e, n1), (e, n2), (e,n3))
– C1 = M3 mod n1, C2 = M3 mod n2, C3 = M3 mod n3, 

• An attacker can compute a solution to the following 
system

• The solution x modulo n1n2n3 must be M3

– (No modulus!), one can compute integer cubit root
• Countermeasure: padding required

x ≡ c1 mod n1

x ≡ c 2 mod n 2

x ≡ c 3 mod n 3
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Other Attacks on RSA

Forward Search Attack
• If the message space is small, the attacker can 

create a dictionary of encrypted messages 
(public key known, encrypt all possible 
messages and store them)

• When the attacker ‘sees’ a message on the 
network, compares the encrypted 
messages, so he finds out what 
particular message was encrypted

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
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Coming Attractions …

• Discrete Log
• Diffie-Hellman
• ElGamal Encryption


