Introduction to Cryptography CS 355

Lecture 21

Group & Testing Prime Numbers

Lecture Outline

- Group
- Quadratic Residues
- Primality Test

Groups

Definition:

A group (G, *) is a set G on which a binary operation * is defined which satisfies the following axioms:

Closure: For all $a, b \in G, a * b \in G$. Associative: For all $a, b, c \in G, (a * b) * c = a * (b * c)$.

- Identity: $\exists e \in G \text{ s.t. for all } a \in G, a^*e = a = e^*a.$
- Inverse: For all $a \in G$, $\exists a^{-1} \in G$ s. t. $a^* a^{-1} = a^{-1} * a = e$. **Definition:**

A group (G, *) is called an abelian group if * is a commutative operation:

Commutative: For all $a, b \in G$, a * b = b * a.

Examples

- Is (Z, +) a group?
- Is (Z,x) a group?
- Is (Q*, ×) a group, where Q* denote non-zero rational numbers?
- The group $(Z_2,+)$
 - $\{0,1\}$
 - 0+0=0 0+1=1 1+0=1 1+1=0
 - add modulo 2 is the same as the XOR operator
- Is (Z₂₆,+) a group?

Modular Multiplication

• Is $(\mathbb{Z}_7^*, \mathbf{x})$ a group?

- elements: $Z_7^* = \{1, 2, 3, 4, 5, 6\}$
- does the closure property hold?
- does the associative property hold?
- is there an identity element, if so, which one?
- is there an inverse for every element? If so, what is the inverse for 3?
- Is (Z₂₆^{*}, x) a group?
- When is (Z_n^*, \mathbf{x}) a group?

Cyclic Group

- Definition: Given a group (G, ●),
 - the order of G is |G|
 - the order of an element a in G is the smallest positive integer such that a^m=1
 - $\{a, a^2, \dots, a^m\}$ is a subgroup of G
 - (why?)
- Definition: a group (G,●) is a cyclic group if there exists g∈G such that G={g, g●g, g³, ..., g^{|G|}}
 - g is known as a generator
 - the order of g is |G|
 - (why?)

Z_p* is a Cyclic Group

- Fact: Given a prime p, Z_p* is a cyclic group.
 we won't prove it here.
- There exists $g \in Z_p^*$ s.t. $\{g^j \mid 1 \le j \le p-1\} = Z_p^*$
 - g is a generator of Z_{p}^{*} ,
 - g is also known as the primitive element modulo p
 - what is the order of g
- For example, 2 is a generator for Z₁₁*
 - $\{2^{j} \mid 1 \le j \le p-1\} = \{2,4,8,5,10,9,7,3,6,1\}$
 - what is the order of $4=2^2$? what is the order of $8=2^3$?
- Let g be a generator of Z_p*, and let a=g^j
 - the order of a is (p-1)/gcd(p-1,j)
 - what are the primitive elements in Z_{11}^* ?

Quadratic Residues Modulo A Prime

Definition

- a is a quadratic residue modulo p if ∃ b ∈ Z_p^{*} such that b² ≡ a mod p,
- Therefore when $a \neq 0$, a is a quadratic $n \overline{Q}_{p}$ nresidue
- is the set of all quadratic residues in Z_p^{*}
- is the set of all quadratic nonresidues in $Z_{\rm p}^{\ *}$
- If p is prime there are (p-1)/2 quadratic
 CS 35 residues in Z_p^{*}, |Q_p|² (p-1)/2

Example

- $Z_{11}^{*} = \{ 2, 4, 8, 5, 10, 9, 7, 3, 6, 1 \}$ $2^{1} 2^{2} 2^{3} 2^{4} 2^{5} 2^{6} 2^{7} 2^{8} 2^{9} 2^{10} \}$
- $Z_{11}^* = \{$ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 $\}$ Square 1 4 9 5 3 3 5 9 4 1

$$Q_{11} = \{ 1, 4, 9, 5, 3 \}$$

$$\overline{Q}_{11} = \{ 2, 6, 7, 8, 10 \}$$

How Many Square Roots Does an Element in Q_p has

- A element a in Q_p has exactly two square roots
 - a has at least two square roots
 - if $b^2 \equiv a \mod p$, then $(p-b)^2 \equiv a \mod p$
 - a has at most two square roots in Z_{p}^{*}
 - if $b^2 \equiv a \mod p$ and $c^2 \equiv a \mod p$, then $b^2 c^2 \equiv 0 \mod p$
 - then p | (b+c)(b-c), either b=c, or b+c=p

Legendre Symbol

 Let p be an odd prime and a be an integer. The Legendre symbol is defined

$$\left(\frac{a}{p}\right) = \begin{cases} 0, \text{ if } p \mid a \\ 1, \text{ if } a \in Q_p \\ -1, \text{ if } a \in \overline{Q}_p \end{cases}$$

 The remaining slides in this lecture are advanced topics and won't be in the quizs/exams

Euler's Criterion

Theorem: If a $(p-1)/2 \equiv 1 \mod p$, then a is a quadratic residue (if $\equiv -1$ then a is a quadratic nonresidue)

I.e., the Legendre symbol
$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \mod p$$

Proof. If $a = y^2$, then $a^{(p-1)/2} = y^{(p-1)} = 1 \pmod{p}$ If $a^{(p-1)/2}=1$, let $a = g^j$, where g is a generator of the group Z_p^* . Then $g^{j(p-1)/2} = 1 \pmod{p}$. Since g is a generator, $(p-1) \mid j (p-1)/2$, thus j must be even. Therefore, $a=g^j$ is QR.

Jacobi Symbol

• let $n \ge 3$ be odd with prime factorization

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

• the Jacobi symbol is defined to be

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \left(\frac{a}{p_2}\right)^{e_2} \dots \left(\frac{a}{p_k}\right)^{e_k}$$

 the Jacobi symbol can be computed without factoring n

Euler Pseudo-prime

- For any prime p, the Legendre symbol $\left(\frac{a}{p}\right) = a^{(p-1)/2} \mod p$
- For a composite n, if the Jacobi symbol $\left(\frac{a}{n}\right) = a^{(n-1)/2} \mod n$ then n is called an Euler pseudo-prime to the base a,

- i.e., a is a "pseudo" evidence that n is prime

 For any composite n, the number of "pseudo" evidences that n is prime for at most half of the integers in Z_n*

The Solovay-Strassen Algorithm

Solovay-Strassen(n)

choose a random integer a s.t. $1 \le a \le n-1$

 $\mathbf{X} \leftarrow \left(\frac{a}{n}\right)$

if x=0 then return ("n is composite")

// gcd(x,n)≠1

 $y \leftarrow a^{(n-1)/2} \mod n$

if (x=y) then return ("n is prime")

// either n is a prime, or a pseudo-prime

else return ("n is composite")

// violates Euler's criterion

If n is composite, it passes the test with at most ½ prob. Use multiple tests before accepting n as prime.

Rabin-Miller Test

- Another efficient probabilistic algorithm for determining if a given number n is prime.
 - Write n-1 as 2^{k} m, with m odd.
 - Choose a random integer a, 1 = a = n-1.
 - $-b \leftarrow a^m \mod n$
 - if b=1 then return "n is prime"
 - compute b, b²,b⁴,...,b^{2^(k-1)}, if we find -1, return "n is prime"
 - return "n is composite"
- A composite number pass the test with 1/4 prob.
- When t tests are used with independent a, a composite passes with (¹/₄)^t prob.
- The test is fast, used very often in practice.

Why Rabin-Miller Test Work

Claim: If the algorithm returns "n is composite", then n is not a prime.

Proof: if we choose a and returns "n is composite", then

- $a^{m} \neq 1, a^{m} \neq -1, a^{2m} \neq -1, a^{4m} \neq -1, ..., a^{2^{k-1}m} \neq -1$ (mod n)
- suppose, for the sake of contradiction, that n is prime,
- then $a^{n-1}=a^{2^{k}m}=1 \pmod{n}$
- then there are two square roots modulo n, 1 and -1
- then $a^{2^{k-1}m} = a^{2^{k-2}m} = a^{2m} = a^m = 1$ (contradiction!)
- so if n is prime, the algorithm will not return "composite"

Coming Attractions ...

Attacks on RSA

