
CS 355 Fall 2005 / Lecture 20 1

Introduction to Cryptography
CS 355

Lecture 20

Fast Exponentiation & Pohlig-Hellman
Exponentiation Cipher

CS 355 Fall 2005 / Lecture 20 2

Lecture Outline

• Why public key
cryptography?

• Overview of Public Key
Cryptography

• RSA
– square & multiply

algorithm
– RSA implementation

• Pohlig-Hellman

CS 355 Fall 2005 / Lecture 20 3

Why does RSA work?

• Need to show that (Me)d (mod n) = M, n = pq
• We have shown that when M∈Zpq*, i.e., gcd(M,

n) = 1, then Med ≡ M (mod n)
• What if M∈Zpq−{0}−Zpq*, e.g., gcd(M, n) = p.

– ed ≡ 1 (mod Φ(n)), so ed = kΦ(n) + 1, for some
integer k.

– Med mod p = (M mod p)ed mod p = 0
so Med ≡ M mod p

– Med mod q = (Mk*Φ(n) mod q) (M mod q) = M mod q
so Med ≡ M mod q

– As p and q are distinct primes, it follows from the
CRT that Med ≡ M mod pq

CS 355 Fall 2005 / Lecture 20 4

Square and Multiply Algorithm for
Exponentiation

• Computing (x)c mod n
– Example: suppose that c=53=110101
– x53=(x13)2·x=(((x3)2)2·x)2)2·x =(((x2·x)2)2·x)2)2·x mod n

Alg: Square-and-multiply (x, n, c = ck-1 ck-2 … c1 c0)
z=1
for i ← k-1 downto 0 {

z ← z2 mod n
if ci = 1 then z ← (z × x) mod n

}
return z

CS 355 Fall 2005 / Lecture 20 5

Efficiency of computation modulo n

• Suppose that n is a k-bit number, and 0≤ x,y ≤ n
– computing (x+y) mod n takes time O(k)
– computing (x-y) mod n takes time O(k)
– computing (xy) mod n takes time O(k2)
– computing (x-1) mod n takes time O(k3)
– computing (x)c mod n takes time O((log c) k2)

CS 355 Fall 2005 / Lecture 20 6

RSA Implementation

n, p, q
• The security of RSA depends on how

large n is, which is often measured in the
number of bits for n. Current
recommendation is 1024 bits for n.

• p and q should have the same bit length,
so for 1024 bits RSA, p and q should be
about 512 bits.

• p-q should not be small

CS 355 Fall 2005 / Lecture 20 7

RSA Implementation

• Select p and q prime
numbers

• In general, select
numbers, then test for
primality

• Many implementations use
the Rabin-Miller test,
(probabilistic test)

CS 355 Fall 2005 / Lecture 20 8

RSA Implementation

e
• e is usually chosen to be

3 or 216 + 1 = 65537
• In order to speed up the

encryption
– the smaller the number of

1 bits, the better
– why?

CS 355 Fall 2005 / Lecture 20 9

Pohlig-Hellman Exponentiation Cipher

• A symmetric key exponentiation cipher
– encryption key (e,p), where p is a prime
– decryption key (d,p), where ed≡1 (mod (p-1))
– to encrypt M, compute Me mod p
– to decrypt C, compute Cd mod p

• Why is this not a public key cipher?
• What makes RSA different?

CS 355 Fall 2005 / Lecture 20 10

Distribution of Prime Numbers

Theorem (Gaps between primes)
For every positive integer n, there are n or
more consecutive composite numbers.

Proof Idea:
The consective numbers

(n+1)! + 2, (n+1)! + 3, …., (n+1)! + n+1
are composite.
(Why?)

CS 355 Fall 2005 / Lecture 20 11

Distribution of Prime Numbers

Definition
Given real number x, let π(x) be the number of
prime numbers = x.

Theorem (prime numbers theorem)

For a very large number x, the number of prime
numbers smaller than x is close to x/ln x.

lim
x→∞

π (x)
x /ln x

=1

CS 355 Fall 2005 / Lecture 20 12

Generating large prime numbers

• Randomly generate a large odd number and
then test whether it is prime.

• How many random integers need to be tested
before finding a prime?
– the number of prime numbers ≤ p is about N / ln p
– roughly every ln p integers has a prime

• for a 512 bit p, ln p = 355. on average, need to test
about 177=355/2 odd numbers

• Need to solve the Primality testing problem
– the decision problem to decide whether a number is a

prime

CS 355 Fall 2005 / Lecture 20 13

Coming Attractions …

• Group
• Quadratic Residues
• Primality Test

