Introduction to Cryptography
CS 355

| ecture 20

Fast Exponentiation & Pohlig-Hellman
Exponentiation Cipher

CS 355 Fall 2005 / Lecture 20 1

L ecture Outline

* Why public key
cryptography?

« Overview of Public Key
Cryptography

« RSA

— square & multiply
algorithm

— RSA implementation
* Pohlig-Hellman

CS 355 Fall 2005 / Lecture 20 2

Why does RSA work?

* Need to show that (M&)4 (mod n) =M, n = pq

« We have shown that when Ml Zng™r 1.€., gcd(M,
n) =1, then M®9° M (mod n)
» What if Ml Z,,-{0}-Z,.*, e.g., gcd(M, n) = p
—ed®1 (mod F(n)) so ed = kF(n) + 1, for some
Integer K.
— Medmod p = (M mod p)edmod p =0
so Med° M mod p
— Meéd mod g = (MKF(™ mod g) (M mod q) = M mod q
so Med° M mod q

— As p and g are distinct primes, it follows from the
CRT that Med° M mod pg

CS 355 Fall 2005 / Lecture 20

Square and Multiply Algorithm for
Exponentiation

e Computing (X)° mod n
— Example: suppose that c=53=110101
— x>3=(x19)2-x=(((x°)%)?-Xx)%)?-x =(((x*-x)?)*-x)?)*-x mod n

Alg: Square-and-multiply (x, n,c=c¢,; C,, ... C; Cp)
z=1
fori—- k-1 downto O {
Z- zmodn
ifc,=1thenz - (z xXx) mod n

}

return z

CS 355 Fall 2005 / Lecture 20

Efficiency of computation modulo n

e Suppose that n is a k-bit number, and O£ x,y £n
— computing (x+Yy) mod n takes time O(k)
— computing (x-y) mod n takes time O(k)
— computing (xy) mod n takes time O(k?)
— computing (x1) mod n takes time O(k3)
— computing (x)¢ mod n takes time O((log c) k?)

CS 355 Fall 2005 / Lecture 20

RSA Implementation

n, p, g

* The security of RSA depends on how
large n Is, which is often measured in the
number of bits for n. Current
recommendation is 1024 bits for n.

* p and g should have the same bit length,
so for 1024 bits RSA, p and g should be
about 512 bits.

* p-qg should not be small

CS 355 Fall 2005 / Lecture 20

RSA Implementation

* Select p and g prime
numbers

* |In general, select
numbers, then test for
primality

 Many implementations use
the Rabin-Miller test,
(probabillistic test)

CS 355 Fall 2005 / Lecture 20

RSA Implementation

e

* e Is usually chosen to be
3or21%+1=65537

* |n order to speed up the
encryption
— the smaller the number of
1 bits, the better

— why?

CS 355 Fall 2005 / Lecture 20

Pohlig-Hellman Exponentiation Cipher

« A symmetric key exponentiation cipher
— encryption key (e,p), where p Is a prime
— decryption key (d,p), where ed®1 (mod (p-1))
— to encrypt M, compute M® mod p
— to decrypt C, compute C4 mod p

« Why is this not a public key cipher?
 What makes RSA different?

CS 355 Fall 2005 / Lecture 20

Distribution of Prime Numbers

Theorem (Gaps between primes)

For every positive integer n, there are n or
more consecutive composite numbers.

Proof Idea:

The consective numbers

(n+1)!'+ 2, (n+1)! + 3,, (n+1)! + n+1
are composite.
(Why?)

CS 355 Fall 2005 / Lecture 20

10

Distribution of Prime Numbers

Definition
Given real number X, let p(x) be the number of
prime numbers = x.

Theorem (prime numbers theorem)
imPX) 4
x®¥ X [N X

For a very large number x, the number of prime
numbers smaller than x is close to x/In x.

CS 355 Fall 2005 / Lecture 20 11

Generating large prime numbers

« Randomly generate a large odd number and
then test whether it is prime.

 How many random integers need to be tested
before finding a prime?
— the number of prime numbers £ p is about N/ In p
— roughly every In p integers has a prime

e for a 512 bit p, In p = 355. on average, need to test
about 177=355/2 odd numbers

* Need to solve the Primality testing problem

— the decision problem to decide whether a number is a
prime

CS 355 Fall 2005 / Lecture 20 12

Coming Attractions....

 Group
* Quadratic Residues
* Primality Test

CS 355 Fall 2005 / Lecture 20

13

