Introduction to Cryptography CS 355

Lecture 19

RSA

Review: Number Theory

Definition An integer n > 1 is called a prime number if its positive divisors are 1 and n. **Definition** Any integer number n > 1 that is not prime is called a composite number.

Theorem (Fundamental Theorem of Arithmetic)

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

Definition The greatest common divisor of a and b, denoted by gcd(a, b), is the largest number that divides both a and b. **Definition** Two integers a > 0 and b > 0 are relatively prime if gcd(a, b) = 1.

Review: Euler Phi Function

- **Definition**: A reduced set of residues (RSR) modulo m is a set of integers R each relatively prime to m, so that every integer relatively prime to m is congruent to exactly one integer in R.
- **Definition**: Given n, $Z_n^* = \{a \mid 0 < a < n \text{ and } gcd(a,n)=1\}$ is the standard RSR modulo n.

Definition

Given an integer n, $\Phi(n) = |Z_n^*|$ is the size of RSR modulo n.

Theorem: If gcd(m,n) = 1, $\Phi(mn) = \Phi(m) \Phi(n)$

Fact: $\Phi(p)=p-1$ for prime p

Review: Euler's Theorem

Euler's Theorem

Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)} \equiv 1 \pmod{n}$

Corollary: Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)-1} \mod n$ is a multiplicative inverse of a mod n.

Corollary: Given integer n > 1, x, y, and a positive integers with gcd(a, n) = 1. If $x \equiv y \pmod{\Phi(n)}$, then

 $a^x \equiv a^y \pmod{n}$.

Corollary (Fermat's "Little" Theorem): $a^{p-1} \equiv 1 \pmod{n}$

Lecture Outline

- Why public key cryptography?
- Overview of Public Key Cryptography
- RSA
 - square & multiply algorithm
 - RSA implementation
- Pohlig-Hellman

Limitation of Secret Key (Symmetric) Cryptography

- Sender and receiver must share the same key
 - needs secure channel for key distribution
 - impossible for two parties having no prior relationship

Public Key Cryptography Overview

- Proposed in Diffie and Hellman (1976) "New Directions in Cryptography"
 - public-key encryption schemes
 - public key distribution systems
 - Diffie-Hellman key agreement protocol
 - digital signature
- Public-key encryption was proposed in 1970 by James Ellis
 - in a classified paper made public in 1997 by the British Governmental Communications Headquarters
- Diffie-Hellman key agreement and concept of digital signature are still due to Diffie & Hellman

Public Key Encryption

- Public-key encryption
 - each party has a PAIR (K, K⁻¹) of keys: K is the **public** key and K⁻¹ is the **secret** key, such that
 D_{K⁻¹}[E_K[M]] = M
 - Knowing the public-key and the cipher, it is computationally infeasible to compute the private key
 - Public-key crypto system is thus known to be asymmetric crypto systems
 - The public-key K may be made publicly available, e.g., in a publicly available directory
 - Many can encrypt, only one can decrypt

Public-Key Encryption Needs Oneway Trapdoor Functions

- Given a public-key crypto system,
 - Alice has public key K
 - E_K must be a one-way function, knowing y= E_K[x], it should be difficult to find x
 - However, $\mathbf{E}_{\mathbf{K}}$ must not be one-way from Alice's perspective. The function $\mathbf{E}_{\mathbf{K}}$ must have a trapdoor such that knowledge of the trapdoor enables one to invert it

Trapdoor One-way Functions

Definition:

A function f: $\{0,1\}^* \rightarrow \{0,1\}^*$ is a trapdoor one-way function iff f(x) is a one-way function; however, given some extra information it becomes feasible to compute f⁻¹: given y, find x s.t. y = f(x)

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi
 Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

- Let p and q be two large primes
- Denote their product n=pq.
- Z_n*= Z_{pq}* contains all integers in the range [1,pq-1] that are relatively prime to both p and q
- The size of Z_n^* is $\Phi(pq) = (p-1)(q-1)=n-(p+q)+1$
- For every $x \in Z_{pq}^{*}$, $x^{(p-1)(q-1)} \equiv 1$

Exponentiation in Z_{pq}^{*}

- Motivation: We want to use exponentiation for encryption
- Let e be an integer, 1<e<(p-1)(q-1)
- When is the function f(x)=x^e, a one-to-one function in Z_{pq}*?
- If x^e is one-to-one, then it is a permutation in Z_{pq}^* .

Exponentiation in Z_{pq}^{*}

- Claim: If e is relatively prime to (p-1)(q-1) then f(x)=x^e is a one-to-one function in Z_{pq}*
- Proof by constructing the inverse function of f. As gcd(e,(p-1)(q-1))=1, then there exists d and k s.t. ed=1+k(p-1)(q-1)
- Let y=x^e, then y^d=(x^e)^d=x^{1+k(p-1)(q-1)}=x (mod pq),
 i.e., g(y)=y^d is the inverse of f(x)=x^e.

RSA Public Key Crypto System

Key generation:

Select 2 large prime numbers of about the same size, p and q

Compute n = pq, and $\Phi(n) = (q-1)(p-1)$

Select a random integer e, $1 < e < \Phi(n)$, s.t. gcd(e, $\Phi(n)$) = 1

Compute d, $1 < d < \Phi(n)$ s.t. $ed \equiv 1 \mod \Phi(n)$

Public key: (e, n) Secret key: d

RSA Description (cont.)

Encryption

Decryption

Given a ciphertext C, use private key (d) Compute C^d mod n = (M^e mod n)^d mod n = M^{ed} mod n = M

RSA Example

- $p = 11, q = 7, n = 77, \Phi(n) = 60$
- d = 13, e = 37 (ed = 481; $ed \mod 60 = 1$)
- Let M = 15. Then C = M^e mod n - C = $15^{37} \pmod{77} = 71$
- $M \equiv C^d \mod n$ - $M \equiv 71^{13} \pmod{77} = 15$

Coming Attractions ...

- Fast exponentiation algorithm
- Pohlig-Hellman Exponentiation Cipher
- Distribution of Prime Numbers

