Introduction to Cryptography CS 355

Lecture 18

Security of Symmetric Encryption Schemes

Lecture Outline

- Ideal Block Cipher
- Pseudorandom Permutation (PRP)
- Semantic security

 (a.k.a.
 Indistinguishability
 Security)

Ideal block cipher

- An ideal block cipher is a substitution cipher from {0,1}ⁿ to {0,1}ⁿ
 - Also known as a random permutation
 - Each key determines one permutation on the plaintext space
 - A random key is chosen
- Why is this an ideal block cipher?
 - Known-plaintext, chosen plaintext, and chosen ciphertext attacks are totally ineffective

Ideal block cipher

- What is the key space for the ideal block cipher of block size n?
 - total number of keys: 2ⁿ!
 - insecure when n is small
 - impractical when n is large: key length

$$s = \log(2^{n}!) > \log 2^{n} + \log(2^{n} - 1) + \dots + \log 2^{n-1}$$
$$> \log 2^{n-1} + \log(2^{n-1}) + \dots + \log 2^{n-1} > (n-1)2^{n-1}$$

- For n=64, key length is $log (2^{64}!) > 64.2^{63}$

Security Goal of Block Cipher

- Indistinguishable from an ideal block cipher (i.e., a random permutation)
- The best block cipher should be a pseudorandom permutation (PRP)
- For all existing block ciphers, if there is no known attacks, they are assumed to be PRP for some suitable parameters.

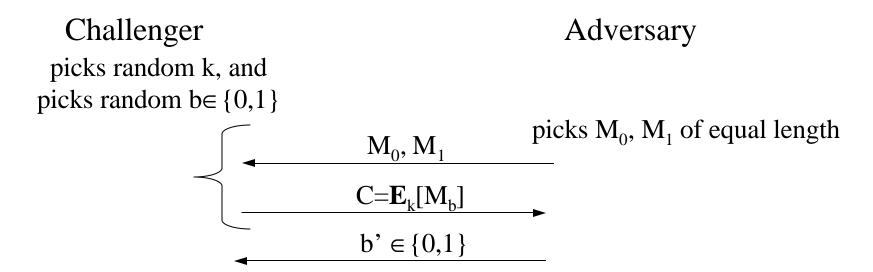
Symmetric Encryption Schemes

- A block cipher operates on one block
- An encryption scheme encrypts much longer messages
- Randomized vs. deterministic schemes
 - CBC is randomized

What Does Security Mean?

- What does insecurity mean?
 - from a few ciphertexts, can recover the encryption key
 - from a few ciphertexts, can recover the plaintext of some ciphertexts
 - from a few ciphertexts, can recover partial information of some ciphertexts

What Does Security Mean?


- Perfect secrecy
 - Given ciphertexts, cannot learn anything (other than the length of the message) about the plaintext
 - not very useful as requires long keys
- Approximate perfect secrecy?
 - with limited computing resources, it is extremely unlikely one can learn anything (other than the length) about the plaintexts from the ciphertexts
- How to formalize this?

Towards Semantic Security

 Suppose that the adversary knows that a ciphertext results from one of two possible plaintexts, the adversary should not be able to tell that which one plaintext is more likely to be the actual one.

IND-CPA

- a.k.a Semantic Security
- A cipher is (t,ε) IND-CPA secure if no t-time adversary wins the following game with prob. ≥ 0.5 + ε

Attacker wins game if b=b'

Block Cipher Modes Revisited

 If a block cipher is a PRP, then using this cipher under the CBC, CTR modes has semantic security.

Coming Attractions ...

RSA

