Introduction to Cryptography CS 355

Lecture 17

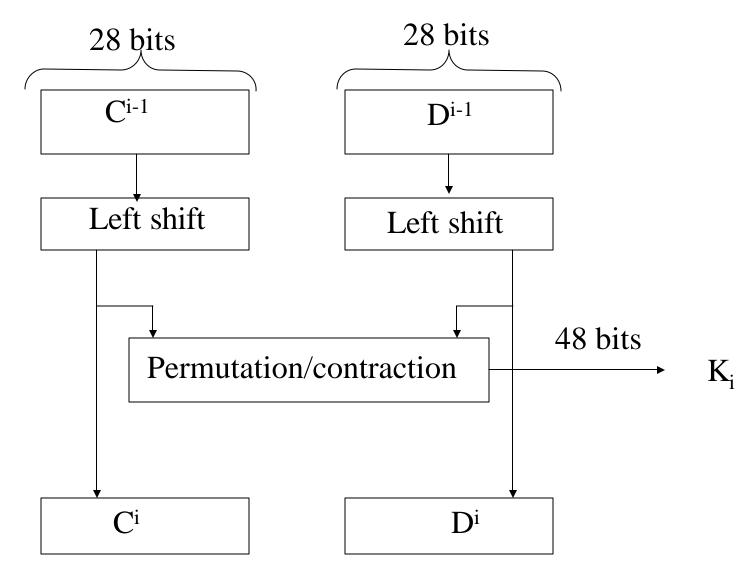
Cryptanalysis of Block Ciphers

Lecture Outline

- Cryptanalysis of DES
 - Weak keys
 - Brute force attack
 - 2DES and 3DES
 - Differential cryptanalysis
 - Linear cryptanalysis

DES Weak Keys

- Definition: A DES weak key is a key K such that E_K(E_K(x))=x for all x, i.e., encryption and the decryption is the same
 - these keys make the same sub-key to be generated in all rounds.
- DES has 4 weak keys (only the 56-bit part of it) 0000000 0000000


0000000 FFFFFF

FFFFFF 0000000

FFFFFFF FFFFFFF

 Weak keys should be avoided at key generation.

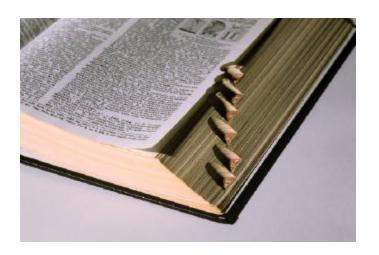
DES Key Scheduling

DES semi-weak keys

- A pair of DES semi-weak keys is a pair (K1,K2)
 with E_{K1}(E_{K2}(x))=x
- There are six pairs of DES semi-weak keys

Cryptanalysis of DES

Brute Force:


- Known-Plaintext Attack
- Try all 2⁵⁶ possible keys
- Requires constant memory
- Time-consuming
- DES challenges: (RSA)
 - msg="the unknown message is :xxxxxxxxx"
 - CT=" C1 | C2 | C3 | C4"
 - 1997 Internet search: 3 months
 - 1998 EFF machine (costs \$250K): 3 days
 - 1999 Combined: 22 hours

Cryptanalysis of DES

Dictionary attack:

 Each plaintext may result in 2⁶⁴ different ciphertexts, but there are only 2⁵⁶ possible different values.

- Encrypt the known plaintext with all possible keys.
- Keep a look up table of size 2⁵⁶.
- Given a PT/CT pair (M,C), look up C in the table

Strengthening DES to avoid Exhaustive Search: 3DES

- Triple-DES
- Let E_k[M] be a symmetric block cipher
- Define: $3E_{k1,k2,k3}[M] = E_{k1}[D_{k2}[E_{k3}[M]]]$
- Observe: when k1=k2=k3, $3E_{k1,k2,k3}[M]=E_{k}[M]$
- For triple DES, key=168 bits
- Why not 2DES?
 - $E_{k1,k2}[M] = E_{k1}[E_{k2}[M]]$

Attack on 2DES

- Given (M,C), where $C=\mathbf{E}_{k1,k2}[M]$
- Then $D_{k1}[C] = E_{k2}[M]$
- Build table of all encryptions of M
- Then for each possible k, test if $\mathbf{D}_{k}(C)$ is in the table
- Takes about 2⁵⁶ time
- Requires ≈ 2⁵⁶ space ≈10¹⁶
- Possible to trade time off space
- Effective key length is 56 << 2*56=112
- How effective is this attack on 3DES?

Differential Cryptanalysis

Main idea:

- This is a chosen plaintext attack, assumes than an attacker knows (plaintext, ciphertext) pairs
- Difference ?_P = $P_1 \oplus P_2$, ? $C_1 \oplus C_2$
- Distribution of ? C's given ? P may reveal information about the key (certain key bits)
- After finding several bits, use brute-force for the rest of the bits to find the key.

Differential Cryptanalysis of DES

- Surprisingly ... DES was resistant to differential cryptanalysis.
- At the time DES was designed, the authors knew about differential cryptanalysis. S-boxes were designed to resist differential cryptanalysis.
- Against 8-round DES, attack requires 2³⁸ known plaintext-ciphertext pairs.
- Against 16-round DES, attack requires 2⁴⁷ chosen plaintexts.
- Differential cryptanalysis not effective against DES in practice.

Linear Cryptanalysis of DES

- Another attack described in 1993 M. Matsui
- Instead of looking for isolated points at which a block cipher behaves like something simpler, it involves trying to create a simpler approximation to the block cipher as a whole.
- It is an attack that can be applied to an iterated cipher.

Basic idea of linear cryptanalysis

- Suppose that
- (*) Pr [$M_{i1} \oplus M_{i2} \oplus ... \oplus M_{iu}$ $\oplus C_{j1} \oplus C_{j2} \oplus ... \oplus C_{jv}$ $\oplus K_{p1} \oplus k_{p2} \oplus ... \oplus k_{pw} = 1$] = 0.5 + ϵ
- Then one can recover some key bits given large number of PT/CT pairs
- For DES, exists (*) with $\varepsilon=2^{-21}$
- Using this method, one can find 14 key bits using (2²¹)² PT/CT pairs

Linear Cryptanalysis of DES

- M. Matsui showed (1993/1994) that DES can be broke:
 - 8 rounds: 2²¹ known plaintext
 - 16 rounds: 2⁴³ known plaintext, 40 days to generate the pairs (plaintext, ciphertext) and 10 days to find the key
- The attack has no practical implication, requires too many pairs.
- Exhaustive search remains the most effective attack.

Attacks on implementation of ciphers

- Timing attacks
- Power consumption attacks

DES Strength Against Various Attacks

Attack Method	Known	Chosen	Storage complexity	Processing complexity
Exhaustive precomputation	-	1	2 ⁵⁶	1
Exhaustive search	1	-	negligible	2 ⁵⁵
Linear cryptanalysis	2 ⁴³ 2 ³⁸	-	For texts	2 ⁴³ 2 ⁵⁰
Differential cryptanalysis	- 2 ⁵⁵	2 ⁴⁷	For texts	2 ⁴⁷ 2 ⁵⁵

The weakest point of DES remains the size of the key (56 bits)!

Coming Attractions ...

 Ideal Block Cipher and Their Security

