Introduction to Cryptography CS 355

Lecture 16

Encryption Modes & Other Block Ciphers

Announcements

- Homework due
- Mid-term exam Thursday October 13 (7pm to 9pm) in CS G066

Review: Feistel Network

ion: $L_1 = R_0 \qquad R_1 = L_0 \oplus f_1(R_0)$ $L_2 = R_1 \qquad R_2 = L_1 \oplus f_2(R_1)$ $L_d = R_{d-1} \qquad R_d = L_{d-1} \oplus f_d(R_{d-1})$

Decryption:

$$R_{d-1} = L_d \qquad L_{d-1} = R_d \oplus f_d(L_d)$$

...
$$R_0 = L_1; \qquad L_0 = R_1 \oplus f_1(L_1)$$

Review: DES

Rijndael Features

- Designed to be efficient in both hardware and software across a variety of platforms.
- Not a Feistel Network
- Uses a variable block size, 128,192, 256bits, key size of 128-, 192-, or 256-bits.
- Variable number of rounds (10, 12, 14):
 - 10 if B = K = 128 bits
 - 12 if either B or K is 192 and the other is \leq 192
 - 14 if either B or K is 256 bits
- Note: AES uses a 128-bit block size.

Lecture Outline

- Encryption Modes
- Other Block Ciphers

Block Cipher Encryption Modes: ECB

- Message is broken into independent blocks of block_size bits;
- Electronic Code Book (ECB): each block encrypted separately.
- Encryption: c_i = E_k(x_i)
- Decrytion: x_i = D_k(c_i)

Properties of ECB

- Deterministic: the same data block gets encrypted the same way, reveals patterns of data when a data block repeats
- Malleable: reordering ciphertext results in reordered plaintext.
- Errors in one ciphertext block do not propagate.
- Usage: not recommended to encrypt more than one block of data

DES Encryption Modes: CBC

 Cipher Block Chaining (CBC): next input depends upon previous output
Encryption: C_i= E_k (M_iÅC_{i-1}), with C₀=IV
Decryption: M_i= C_{i-1}ÅD_k(C_i), with C₀=IV

Properties of CBC

- Randomized encryption: repeated text gets mapped to different encrypted data.
 - can be proven to be "secure" assuming that the block cipher has desirable properties and that random IV's are used
- A ciphertext block depends on all preceding plaintext blocks; reorder affects decryption
- Errors in one block propagate to two blocks
 - one bit error in C_i affects all bits in M_i and one bit in M_{i+1}
- Sequential encryption, cannot use parallel hardware
- Usage: chooses random IV and protects the integrity of IV
- Observation: if $C_i = C_j$ then $E_k (M_i A C_{i-1}) = E_k (M_j A C_{j-1})$; thus $M_i A C_{i-1} = M_j A C_{j-1}$; thus $M_i A M_j = C_{i-1} A C_{j-1}$

Use DES to construct Stream Ciphers

- Cipher Feedback (CFB)
- Output feedback (OFB)
- Counter Mode (CTR)
- Common properties:
 - uses only the encryption function of the cipher both for encryption and for decryption
 - malleable: possible to make predictable bit changes

Encryption Modes: CFB

• Cipher Feedback (CFB): the message is XORed with the feedback of encrypting the previous block

Properties of CFB

- Randomized encryption
- A ciphertext block depends on all preceding plaintext blocks; reorder affects decryption
- Errors propagate for several blocks after the error, but the mode is self-synchronizing (like CBC).
- Decreased throughput.
 - Can vary the number of bits feed back, trading off throughput for ease of use
- Sequential encryption

Encryption Modes: OFB

- Output feedback (OFB):
 - construct a PRNG using DES

$$- y_0 = IV y_i = E_k[y_{i-1}]$$

Properties of OFB

- Randomized encryption
- Sequential encryption, but pre-processing possible
- Error propagation limited
- Subject to limitation of stream cipher

Encryption Modes:CTR

- Counter Mode (CTR): Another way to construct PRNG using DES
 - $-y_i = E_k[counter+i]$
 - Sender and receiver share: counter (does not need to be secret) and the secret key.

Properties of CTR

- Software and hardware efficiency: different blocks can be encrypted in parallel.
- Preprocessing: the encryption part can be done offline and when the message is known, just do the XOR.
- Random Access: decryption of a block can be done in random order, very useful for harddisk encryption.
- Messages of Arbitrary Length: ciphertext is the same length with the plaintext (i.e., no IV).

International Data Encryption Algorithm (IDEA)

- Originally designed by Massey and Lai at ETH (Zurich), 1990.
- Based on mixing operations from different algebraic groups (XOR, addition mod 2¹⁶, multiplication mod 2¹⁶ +1).
- All operations are on 16-bit sub-blocks, with no permutations used.
- Speed: faster than DES in software.

IDEA

- Features:
 - 128-bit key
 - 64 bit blocks
 - 8 rounds,
 - operates on 16-bit numbers

RC5

- Proprietary cipher owned by RSA Data Security (designed by Ron Rivest).
- Very fast, operates on words.
- Variable key size, block size and number of rounds.
- Clean and simple design.

RC5 Features

- RC5 is a family of ciphers rc5-w/r/b
 - -W = word size in bits (16/32/64) nb data=2w
 - -R = number of rounds (0..255)
 - B = number of bytes in the key (0..255)
- Widely used version is RC5-32/12/16
 - 32-bit words so encrypts 64-bit data blocks
 - Using 12 rounds
 - 16 bytes (128-bit) secret key

Coming Attractions ...

- Cryptanalysis of DES
- Security of Block Ciphers

